Jan van Hest

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1424277/publications.pdf

Version: 2024-02-01

318 22,552 76
papers citations h-index

136
ex g-index
9 20730

citing authors

329 all docs

329 docs citations 329 times ranked

#	Article	IF	CITATIONS
1	Readily Accessible Bicyclononynes for Bioorthogonal Labeling and Threeâ€Dimensional Imaging of Living Cells. Angewandte Chemie - International Edition, 2010, 49, 9422-9425.	13.8	592
2	Autonomous movement of platinum-loaded stomatocytes. Nature Chemistry, 2012, 4, 268-274.	13.6	519
3	Aza-dibenzocyclooctynes for fast and efficient enzyme PEGylation via copper-free (3+2) cycloaddition. Chemical Communications, 2010, 46, 97-99.	4.1	494
4	Modular synthesis of block copolymers via cycloaddition of terminal azide and alkyne functionalized polymers. Chemical Communications, 2005, , 57.	4.1	475
5	Polymeric vesicles in biomedical applications. Polymer Chemistry, 2011, 2, 1449.	3.9	470
6	Cascade Reactions in Multicompartmentalized Polymersomes. Angewandte Chemie - International Edition, 2014, 53, 146-150.	13.8	463
7	Artificial Cells: Synthetic Compartments with Life-like Functionality and Adaptivity. Accounts of Chemical Research, 2017, 50, 769-777.	15.6	456
8	Peptide- and Protein-Based Hydrogels. Chemistry of Materials, 2012, 24, 759-773.	6.7	430
9	Elastin as a biomaterial for tissue engineering. Biomaterials, 2007, 28, 4378-4398.	11.4	416
10	Positional Assembly of Enzymes in Polymersome Nanoreactors for Cascade Reactions. Angewandte Chemie - International Edition, 2007, 46, 7378-7382.	13.8	391
11	Biohybrid Polymer Capsules. Chemical Reviews, 2009, 109, 6212-6274.	47.7	375
12	Protein-based materials, toward a new level of structural control. Chemical Communications, 2001, , 1897-1904.	4.1	368
13	The chemistry of tissue adhesive materials. Progress in Polymer Science, 2014, 39, 1375-1405.	24.7	337
14	A Polymersome Nanoreactor with Controllable Permeability Induced by Stimuliâ€Responsive Block Copolymers. Advanced Materials, 2009, 21, 2787-2791.	21.0	320
15	A Threeâ€Enzyme Cascade Reaction through Positional Assembly of Enzymes in a Polymersome Nanoreactor. Chemistry - A European Journal, 2009, 15, 1107-1114.	3.3	319
16	Stimulus responsive peptide based materials. Chemical Society Reviews, 2010, 39, 3394.	38.1	284
17	Efficient Incorporation of Unsaturated Methionine Analogues into Proteins in Vivo. Journal of the American Chemical Society, 2000, 122, 1282-1288.	13.7	265
18	Bio-inks for 3D bioprinting: recent advances and future prospects. Polymer Chemistry, 2017, 8, 4451-4471.	3.9	256

#	Article	IF	CITATIONS
19	Self-propelled supramolecular nanomotors with temperature-responsive speed regulation. Nature Chemistry, 2017, 9, 480-486.	13.6	254
20	Polymersome Colloidosomes for Enzyme Catalysis in a Biphasic System. Angewandte Chemie - International Edition, 2012, 51, 10746-10750.	13.8	250
21	Compartmentalization Approaches in Soft Matter Science: From Nanoreactor Development to Organelle Mimics. Advanced Materials, 2016, 28, 1109-1128.	21.0	250
22	Peptide based amphiphiles. Chemical Society Reviews, 2004, 33, 234-245.	38.1	242
23	Polypeptide–polymer bioconjugates. Chemical Society Reviews, 2010, 39, 329-353.	38.1	240
24	Dynamic Loading and Unloading of Proteins in Polymeric Stomatocytes: Formation of an Enzyme-Loaded Supramolecular Nanomotor. ACS Nano, 2016, 10, 2652-2660.	14.6	240
25	Staudinger Ligation as a Method for Bioconjugation. Angewandte Chemie - International Edition, 2011, 50, 8806-8827.	13.8	239
26	Multi-enzyme systems: bringing enzymes together in vitro. Soft Matter, 2012, 8, 1736-1746.	2.7	236
27	Preparation of biohybrid amphiphiles via the copper catalysed Huisgen [3 + 2] dipolar cycloaddition reaction. Chemical Communications, 2005, , 4172.	4.1	201
28	Polymersome Stomatocytes: Controlled Shape Transformation in Polymer Vesicles. Journal of the American Chemical Society, 2010, 132, 12522-12524.	13.7	199
29	Smart nanocontainers and nanoreactors. Nanoscale, 2010, 2, 844.	5.6	194
30	From polymeric nanoreactors to artificial organelles. Chemical Science, 2012, 3, 335-342.	7.4	190
31	Selfâ€Guided Supramolecular Cargoâ€Loaded Nanomotors with Chemotactic Behavior towards Cells. Angewandte Chemie - International Edition, 2015, 54, 11662-11665.	13.8	189
32	Manipulation of micro- and nanostructure motion with magnetic fields. Soft Matter, 2014, 10, 1295-1308.	2.7	184
33	Stimuli-responsive polymersomes and nanoreactors. Journal of Materials Chemistry B, 2016, 4, 4632-4647.	5.8	179
34	Feedback-Induced Temporal Control of "Breathing―Polymersomes To Create Self-Adaptive Nanoreactors. Journal of the American Chemical Society, 2018, 140, 5356-5359.	13.7	176
35	Hierarchical Self-Assembly of a Copolymer-Stabilized Coacervate Protocell. Journal of the American Chemical Society, 2017, 139, 17309-17312.	13.7	175
36	Erythrocyte Membrane Modified Janus Polymeric Motors for Thrombus Therapy. ACS Nano, 2018, 12, 4877-4885.	14.6	168

#	Article	IF	CITATIONS
37	Elastin-Based Side-Chain Polymers Synthesized by ATRP. Macromolecules, 2003, 36, 5967-5973.	4.8	165
38	Controlled Assembly of Macromolecular ?-Sheet Fibrils. Angewandte Chemie - International Edition, 2005, 44, 1968-1971.	13.8	157
39	Polymeric Microcapsules for Synthetic Applications. Macromolecular Bioscience, 2008, 8, 991-1005.	4.1	156
40	Functionalization of protein-based nanocages for drug delivery applications. Nanoscale, 2014, 6, 7124-7141.	5 . 6	153
41	Oppositely Charged Gelatin Nanospheres as Building Blocks for Injectable and Biodegradable Gels. Advanced Materials, 2011, 23, H119-24.	21.0	148
42	Physicochemical Properties and Applications of Poly(lactic-co-glycolic acid) for Use in Bone Regeneration. Tissue Engineering - Part B: Reviews, 2013, 19, 380-390.	4.8	147
43	Polymeric Monosaccharide Receptors Responsive at Neutral pH. Journal of the American Chemical Society, 2009, 131, 13908-13909.	13.7	143
44	Bioorthogonal labelling of biomolecules: new functional handles and ligation methods. Organic and Biomolecular Chemistry, 2013, 11, 6439.	2.8	142
45	"Clickable―polymersomes. Chemical Communications, 2007, , 3136.	4.1	140
46	Acidâ€Activatable Transmorphic Peptideâ€Based Nanomaterials for Photodynamic Therapy. Angewandte Chemie - International Edition, 2020, 59, 20582-20588.	13.8	134
47	Cellular Integration of an Enzymeâ€Loaded Polymersome Nanoreactor. Angewandte Chemie - International Edition, 2010, 49, 7213-7216.	13.8	133
48	A Compartmentalized Out-of-Equilibrium Enzymatic Reaction Network for Sustained Autonomous Movement. ACS Central Science, 2016, 2, 843-849.	11.3	133
49	Enzymes containing porous polymersomes as nano reaction vessels for cascade reactions. Organic and Biomolecular Chemistry, 2008, 6, 4315.	2.8	126
50	Modular synthesis of ABC type block copolymers by "click―chemistry. Journal of Polymer Science Part A, 2007, 45, 2913-2924.	2.3	125
51	A virus-based biocatalyst. Nature Nanotechnology, 2007, 2, 226-229.	31.5	115
52	The hallmarks of living systems: towards creating artificial cells. Interface Focus, 2018, 8, 20180023.	3.0	111
53	Intercellular communication between artificial cells by allosteric amplification of a molecular signal. Nature Communications, 2020, 11, 1652.	12.8	106
54	Formation of Well-Defined, Functional Nanotubes via Osmotically Induced Shape Transformation of Biodegradable Polymersomes. Journal of the American Chemical Society, 2016, 138, 9353-9356.	13.7	105

#	Article	IF	CITATIONS
55	Chemical approaches for the construction of multi-enzyme reaction systems. Current Opinion in Structural Biology, 2013, 23, 613-621.	5.7	104
56	Designing Two Self-Assembly Mechanisms into One Viral Capsid Protein. Journal of the American Chemical Society, 2012, 134, 18506-18509.	13.7	101
57	Mimicking Cellular Compartmentalization in a Hierarchical Protocell through Spontaneous Spatial Organization. ACS Central Science, 2019, 5, 1360-1365.	11.3	101
58	Oligo(<i>p</i> -phenylenevinylene)â^Peptide Conjugates: Synthesis and Self-Assembly in Solution and at the Solidâ^Liquid Interface. Journal of the American Chemical Society, 2008, 130, 14576-14583.	13.7	100
59	Stimulus Responsive Behavior of Elastin-Based Side Chain Polymers. Macromolecules, 2005, 38, 1699-1704.	4.8	99
60	Peptideâ€Mediated Blood–Brain Barrier Transport of Polymersomes. Angewandte Chemie - International Edition, 2012, 51, 8339-8342.	13.8	98
61	Single-Step Azide Introduction in Proteins via an Aqueous Diazo Transfer. Bioconjugate Chemistry, 2009, 20, 20-23.	3.6	97
62	Photoactivated nanomotors via aggregation induced emission for enhanced phototherapy. Nature Communications, 2021, 12, 2077.	12.8	97
63	Surface-Charge-Switchable Nanoclusters for Magnetic Resonance Imaging-Guided and Glutathione Depletion-Enhanced Photodynamic Therapy. ACS Nano, 2020, 14, 11225-11237.	14.6	94
64	Biosynthetic-Synthetic Polymer Conjugates. Polymer Reviews, 2007, 47, 63-92.	10.9	93
65	Controlled Shape Transformation of Polymersome Stomatocytes. Angewandte Chemie - International Edition, 2011, 50, 7070-7073.	13.8	92
66	Therapeutic nanoworms: towards novel synthetic dendritic cells for immunotherapy. Chemical Science, 2013, 4, 4168.	7.4	91
67	Polymersome Nanoreactors for Enzymatic Ring-Opening Polymerization. Biomacromolecules, 2007, 8, 3723-3728.	5.4	88
68	Flash Chemistry Extensively Optimized: Highâ€√emperature Swern–Moffatt Oxidation in an Automated Microreactor Platform. Chemistry - an Asian Journal, 2010, 5, 799-805.	3.3	83
69	Permeability Effects on the Efficiency of Antioxidant Nanoreactors. Biomacromolecules, 2013, 14, 2364-2372.	5.4	83
70	Efficient introduction of alkene functionality into proteins in vivo. FEBS Letters, 1998, 428, 68-70.	2.8	82
71	Elastin-Based Side-Chain Polymers:  Improved Synthesis via RAFT and Stimulus Responsive Behavior. Macromolecules, 2007, 40, 6094-6099.	4.8	81
72	A Block Copolymer for Functionalisation of Polymersome Surfaces. Macromolecular Rapid Communications, 2008, 29, 321-325.	3.9	81

#	Article	IF	Citations
73	Supramolecular Adaptive Nanomotors with Magnetotaxis Behavior. Advanced Materials, 2017, 29, 1604996.	21.0	81
74	Site-Specific Modification of <i>Candida antarctica</i> Lipase B via Residue-Specific Incorporation of a Non-Canonical Amino Acid. Bioconjugate Chemistry, 2008, 19, 1127-1131.	3.6	80
75	Synthetic cells and organelles: compartmentalization strategies. BioEssays, 2009, 31, 1299-1308.	2.5	80
76	Exploring the Impact of Morphology on the Properties of Biodegradable Nanoparticles and Their Diffusion in Complex Biological Medium. Biomacromolecules, 2021, 22, 126-133.	5.4	80
77	Copperâ€Free Clickable Coatings. Advanced Functional Materials, 2009, 19, 3464-3470.	14.9	79
78	One-Step Photochemical Attachment of NHS-Terminated Monolayers onto Silicon Surfaces and Subsequent Functionalization. Langmuir, 2008, 24, 7931-7938.	3.5	78
79	Bioorthogonal chemistry in living organisms. Chemical Science, 2014, 5, 2123.	7.4	78
80	Tuning Secondary Structure and Self-Assembly of Amphiphilic Peptides. Langmuir, 2005, 21, 524-526.	3.5	74
81	Synthesis of Bio-Inspired Hybrid PolymersUsing Peptide Synthesis and Protein Engineering. Advances in Polymer Science, 2006, , 19-52.	0.8	74
82	Photoactivated Polymersome Nanomotors: Traversing Biological Barriers. Angewandte Chemie - International Edition, 2020, 59, 16918-16925.	13.8	74
83	Metal-free and pH-controlled introduction of azides in proteins. Chemical Science, 2011, 2, 701.	7.4	73
84	Peptide-polymer vesicles prepared by atom transfer radical polymerization. Journal of Polymer Science Part A, 2005, 43, 6355-6366.	2.3	70
85	Tubular Polymersomes: A Cross-Linker-Induced Shape Transformation. Journal of the American Chemical Society, 2013, 135, 16308-16311.	13.7	70
86	A covalent and cleavable antibody-DNA conjugation strategy for sensitive protein detection via immuno-PCR. Scientific Reports, 2016, 6, 22675.	3.3	70
87	Next Generation Hemostatic Materials Based on NHS-Ester Functionalized Poly(2-oxazoline)s. Biomacromolecules, 2017, 18, 2529-2538.	5.4	70
88	Adaptive Polymersome Nanoreactors. ChemNanoMat, 2019, 5, 1092-1109.	2.8	70
89	Cascade reactions in nanoreactors. Current Opinion in Biotechnology, 2014, 28, 10-16.	6.6	69
90	Biodegradable polymeric microcapsules for selective ultrasound-triggered drug release. Soft Matter, 2011, 7, 5417.	2.7	67

#	Article	IF	CITATIONS
91	Fabrication of Gelatin Microgels by a "Cast―Strategy for Controlled Drug Release. Advanced Functional Materials, 2012, 22, 2673-2681.	14.9	67
92	Strain-Promoted Oxidation-Controlled Cyclooctyne–1,2-Quinone Cycloaddition (SPOCQ) for Fast and Activatable Protein Conjugation. Bioconjugate Chemistry, 2015, 26, 257-261.	3.6	67
93	Fibril Formation by Triblock Copolymers of Silklike \hat{I}^2 -Sheet Polypeptides and Poly(ethylene glycol). Macromolecules, 2006, 39, 2989-2997.	4.8	66
94	Selfâ€Regulated and Temporal Control of a "Breathing―Microgel Mediated by Enzymatic Reaction. Angewandte Chemie - International Edition, 2017, 56, 12581-12585.	13.8	66
95	Constrained and UV-activatable cell-penetrating peptides for intracellular delivery of liposomes. Journal of Controlled Release, 2012, 164, 87-94.	9.9	65
96	Synthesis of Diaminosuberic Acid Derivatives via Ring-Closing Alkyne Metathesis. Journal of Organic Chemistry, 2001, 66, 3584-3589.	3.2	64
97	Size Dependent Biodistribution and SPECT Imaging of ¹¹¹ In-Labeled Polymersomes. Bioconjugate Chemistry, 2012, 23, 958-965.	3.6	64
98	Development of injectable organic/inorganic colloidal composite gels made of self-assembling gelatin nanospheres and calcium phosphate nanocrystals. Acta Biomaterialia, 2014, 10, 508-519.	8.3	63
99	Biodegradable Synthetic Organelles Demonstrate ROS Shielding in Human-Complex-I-Deficient Fibroblasts. ACS Central Science, 2018, 4, 917-928.	11.3	63
100	Continuous one-flow multi-step synthesis of active pharmaceutical ingredients. Reaction Chemistry and Engineering, 2020, 5, 1186-1197.	3.7	63
101	Atom Transfer Radical Polymerization of Adenine, Thymine, Cytosine, and Guanine Nucleobase Monomers. Macromolecules, 2007, 40, 12-18.	4.8	60
102	Elastomeric Polypeptides. Topics in Current Chemistry, 2011, 310, 71-116.	4.0	60
103	Tuning Ice Nucleation with Supercharged Polypeptides. Advanced Materials, 2016, 28, 5008-5012.	21.0	59
104	Reversible Immobilization onto PEGâ€based Emulsionâ€templated Porous Polymers by Coâ€assembly of Stimuli Responsive Polymers. Advanced Materials, 2009, 21, 55-59.	21.0	58
105	Continuous flow azide formation: Optimization and scale-up. Chemical Engineering Journal, 2011, 167, 556-559.	12.7	58
106	Elastinâ€Like Polypeptide Based Nanoparticles: Design Rationale Toward Nanomedicine. Macromolecular Bioscience, 2015, 15, 36-51.	4.1	58
107	Accelerated living cationic ring-opening polymerization of a methyl ester functionalized 2-oxazoline monomer. Polymer Chemistry, 2015, 6, 514-518.	3.9	58
108	Biomimicry of Cellular Motility and Communication Based on Synthetic Softâ€Architectures. Small, 2020, 16, e1907680.	10.0	58

#	Article	IF	CITATIONS
109	Synthesis and assembly behavior of nucleobase-functionalized block copolymers. Journal of Polymer Science Part A, 2006, 44, 4242-4250.	2.3	57
110	Programmed spatial organization of biomacromolecules into discrete, coacervate-based protocells. Nature Communications, 2020, 11, 6282.	12.8	57
111	Fuel concentration dependent movement of supramolecular catalytic nanomotors. Nanoscale, 2013, 5, 1315-1318.	5. 6	56
112	Hybrid Biodegradable Nanomotors through Compartmentalized Synthesis. Nano Letters, 2020, 20, 4472-4480.	9.1	56
113	Polymersome magneto-valves for reversible capture and release of nanoparticles. Nature Communications, 2014, 5, 5010.	12.8	55
114	Multifunctional PVCL nanogels with redox-responsiveness enable enhanced MR imaging and ultrasound-promoted tumor chemotherapy. Theranostics, 2020, 10, 4349-4358.	10.0	55
115	Î ² -Sheet Side Chain Polymers Synthesized by Atom-Transfer Radical Polymerization. Biomacromolecules, 2005, 6, 825-831.	5.4	54
116	Cofactor regeneration in polymersome nanoreactors: enzymatically catalysed Baeyer–Villiger reactions. Journal of Materials Chemistry, 2011, 21, 18923.	6.7	54
117	Stabilization of Peptide Fibrils by Hydrophobic Interaction. Langmuir, 2007, 23, 2058-2063.	3.5	53
118	Cell-free microcompartmentalised transcriptionâ€"translation for the prototyping of synthetic communication networks. Current Opinion in Biotechnology, 2019, 58, 72-80.	6.6	53
119	Enzymatic enantioselective C–Câ€bond formation in microreactors. Biotechnology and Bioengineering, 2008, 99, 1028-1033.	3.3	50
120	Entrapment of Metal Nanoparticles in Polymer Stomatocytes. Journal of the American Chemical Society, 2012, 134, 9894-9897.	13.7	50
121	Sortase A-Mediated N-Terminal Modification of Cowpea Chlorotic Mottle Virus for Highly Efficient Cargo Loading. Bioconjugate Chemistry, 2015, 26, 2429-2434.	3.6	50
122	ATPâ€Mediated Transient Behavior of Stomatocyte Nanosystems. Angewandte Chemie - International Edition, 2019, 58, 13113-13118.	13.8	50
123	Amphiphilic AlEgenâ€polymer aggregates: Design, selfâ€assembly and biomedical applications. Aggregate, 2022, 3, e128.	9.9	49
124	Fast Scale-Up Using Microreactors: Pyrrole Synthesis from Micro to Production Scale. Organic Process Research and Development, 2011, 15, 783-787.	2.7	48
125	Protein Modification by Strainâ∈Promoted Alkyneâ∈"Azide Cycloaddition. ChemBioChem, 2011, 12, 1309-1312.	2.6	48
126	A DNA-based strategy for dynamic positional enzyme immobilization inside fused silica microchannels. Chemical Science, 2011, 2, 1278.	7.4	47

#	Article	IF	CITATIONS
127	In Vivo Biodistribution of Prion- and GM1-Targeted Polymersomes following Intravenous Administration in Mice. Molecular Pharmaceutics, 2012, 9, 1620-1627.	4.6	46
128	Synthesis and Self-Assembly of Well-Defined Elastin-Like Polypeptide–Poly(ethylene glycol) Conjugates. Biomacromolecules, 2014, 15, 2751-2759.	5.4	46
129	Nanoreactors for green catalysis. Beilstein Journal of Organic Chemistry, 2018, 14, 716-733.	2.2	46
130	pH responsive polymersome Pickering emulsion for simple and efficient Janus polymersome fabrication. Chemical Communications, 2014, 50, 14550-14553.	4.1	45
131	Highly efficient enzyme encapsulation in a protein nanocage: towards enzyme catalysis in a cellular nanocompartment mimic. Nanoscale, 2016, 8, 14467-14472.	5.6	45
132	Effect of Formulation and Processing Parameters on the Size of mPEG- <i>b</i> -p(HPMA-Bz) Polymeric Micelles. Langmuir, 2018, 34, 15495-15506.	3.5	45
133	Unusual rate enhancement in the thymine assisted ATRP process of adenine monomers. Polymer, 2005, 46, 8528-8535.	3.8	44
134	Preparation of Biodegradable Liquid Core PLLA Microcapsules and Hollow PLLA Microcapsules Using Microfluidics. Macromolecular Bioscience, 2010, 10, 475-480.	4.1	44
135	Effect of the Diacetylene Position on the Chromatic Properties of Polydiacetylenes from Self-Assembled Peptide Amphiphiles. Biomacromolecules, 2010, 11, 1676-1683.	5.4	44
136	Supramolecular Nanoscaffolds within Cytomimetic Protocells as Signal Localization Hubs. Journal of the American Chemical Society, 2020, 142, 9106-9111.	13.7	44
137	Fine-tuning the transition temperature of a stimuli-responsive polymer by a simple blending procedure. Chemical Communications, 2008, , 2230.	4.1	43
138	Synthesis of poly(2â€oxazoline)s with side chain methyl ester functionalities: Detailed understanding of living copolymerization behavior of methyl ester containing monomers with 2â€alkylâ€2â€oxazolines. Journal of Polymer Science Part A, 2015, 53, 2649-2661.	2.3	43
139	"Clickable―elastins: elastin-like polypeptides functionalized with azide or alkyne groups. Chemical Communications, 2009, , 4022.	4.1	42
140	Boneâ€Adhesive Materials: Clinical Requirements, Mechanisms of Action, and Future Perspective. Advanced Materials Interfaces, 2019, 6, 1802021.	3.7	42
141	The right touch: design of artificial antigen-presenting cells to stimulate the immune system. Chemical Science, 2014, 5, 3355.	7.4	41
142	Self-Assembling VHH-Elastin-Like Peptides for Photodynamic Nanomedicine. Biomacromolecules, 2017, 18, 1302-1310.	5.4	41
143	Self-Assembly and Polymerization of Diacetylene-Containing Peptide Amphiphiles in Aqueous Solution. Biomacromolecules, 2008, 9, 2727-2734.	5.4	40
144	Robust formation of biodegradable polymersomes by direct hydration. Polymer Chemistry, 2015, 6, 691-696.	3.9	39

#	Article	IF	CITATIONS
145	Controlling the morphology of copolymeric vectors for next generation nanomedicine. Journal of Controlled Release, 2017, 259, 29-39.	9.9	39
146	Morphology Under Control: Engineering Biodegradable Stomatocytes. ACS Macro Letters, 2017, 6, 1217-1222.	4.8	39
147	Biosynthesis of an Amphiphilic Silk-Like Polymer. Biomacromolecules, 2008, 9, 1705-1711.	5.4	38
148	N-terminal dual protein functionalization by strain-promoted alkyne–nitrone cycloaddition. Organic and Biomolecular Chemistry, 2013, 11, 2772.	2.8	38
149	Orientation of llama antibodies strongly increases sensitivity of biosensors. Biosensors and Bioelectronics, 2014, 60, 130-136.	10.1	38
150	A Fast and Activatable Crossâ€Linking Strategy for Hydrogel Formation. Advanced Materials, 2015, 27, 1235-1240.	21.0	38
151	Synthesis of pH―and thermoresponsive poly(2â€ <i>n</i> à€propylâ€2â€oxazoline) based copolymers. Journal of Polymer Science Part A, 2016, 54, 1573-1582.	2.3	38
152	CD44-targeted vesicles encapsulating granzyme B as artificial killer cells for potent inhibition of human multiple myeloma in mice. Journal of Controlled Release, 2020, 320, 421-430.	9.9	38
153	Artificial Organelles: Towards Adding or Restoring Intracellular Activity. ChemBioChem, 2021, 22, 2051-2078.	2.6	38
154	Metal Ion-Induced Self-Assembly of a Multi-Responsive Block Copolypeptide into Well-Defined Nanocapsules. Small, 2016, 12, 2476-2483.	10.0	37
155	Stabilization of a Virus-Like Particle and Its Application as a Nanoreactor at Physiological Conditions. Biomacromolecules, 2017, 18, 3492-3497.	5.4	37
156	Enzymatic synthesis of optically pure cyanohydrins in microchannels using a crude cell lysate. Chemical Engineering Journal, 2008, 135, S89-S92.	12.7	36
157	Legomedicine—A Versatile Chemo-Enzymatic Approach for the Preparation of Targeted Dual-Labeled Llama Antibody–Nanoparticle Conjugates. Bioconjugate Chemistry, 2017, 28, 539-548.	3.6	36
158	Physicochemical Characterization of Polymerâ€Stabilized Coacervate Protocells. ChemBioChem, 2019, 20, 2643-2652.	2.6	36
159	Site-Specific Immobilization of DNA in Glass Microchannels via Photolithography. Langmuir, 2009, 25, 13952-13958.	3.5	35
160	A filter-free blood-brain barrier model to quantitatively study transendothelial delivery of nanoparticles by fluorescence spectroscopy. Journal of Controlled Release, 2018, 289, 14-22.	9.9	35
161	Optimizing the Deprotection of the Amine Protecting p-Methoxyphenyl Group in an Automated Microreactor Platform. Organic Process Research and Development, 2009, 13, 1003-1006.	2.7	34
162	Nanobody-Functionalized Polymersomes for Tumor-Vessel Targeting. Macromolecular Bioscience, 2013, 13, 938-945.	4.1	34

#	Article	IF	CITATIONS
163	Aqueous asymmetric cyclopropanation reactions in polymersome membranes. Chemical Communications, 2014, 50, 4040-4043.	4.1	34
164	Biomorphic Engineering of Multifunctional Polylactide Stomatocytes toward Therapeutic Nanoâ€Red Blood Cells. Advanced Science, 2019, 6, 1801678.	11.2	34
165	Biodegradable Polymersomes with Structure Inherent Fluorescence and Targeting Capacity for Enhanced Photoâ€Dynamic Therapy. Angewandte Chemie - International Edition, 2021, 60, 17629-17637.	13.8	34
166	Probing morphological changes in polymersomes with magnetic birefringence. Chemical Communications, 2014, 50, 5394-5396.	4.1	33
167	Non-covalent stabilization of a \hat{l}^2 -hairpin peptide into liposomes. Organic and Biomolecular Chemistry, 2003, 1, 1827-1829.	2.8	32
168	Solid-phase synthesis of C-terminally modified peptides. Journal of Peptide Science, 2006, 12, 686-692.	1.4	32
169	Activation of cell-penetrating peptides by disulfide bridge formation of truncated precursors. Chemical Communications, 2014, 50, 415-417.	4.1	32
170	Reversibly Triggered Protein–Ligand Assemblies in Giant Vesicles. Angewandte Chemie - International Edition, 2015, 54, 9614-9617.	13.8	32
171	Solid phase synthesis of biohybrid block copolymers. Chemical Communications, 2005, , 602-604.	4.1	31
172	Thermal Properties of Methyl Ester-Containing Poly(2-oxazoline)s. Polymers, 2015, 7, 1998-2008.	4.5	31
173	Synthetic pathways to tetrahydrocannabinol (THC): an overview. Organic and Biomolecular Chemistry, 2020, 18, 3203-3215.	2.8	31
174	Self-assembly of dendritic-linear block copolymers with fixed molecular weight and block ratio. Chemical Communications, 2012, 48, 3590.	4.1	30
175	Soft PEGâ€Hydrogels with Independently Tunable Stiffness and RGDSâ€Content for Cell Adhesion Studies. Macromolecular Bioscience, 2015, 15, 1338-1347.	4.1	30
176	Methods for production of uniform small-sized polymersome with rigid membrane. Polymer Chemistry, 2016, 7, 3977-3982.	3.9	30
177	GE11 peptide-installed chimaeric polymersomes tailor-made for high-efficiency EGFR-targeted protein therapy of orthotopic hepatocellular carcinoma. Acta Biomaterialia, 2020, 113, 512-521.	8.3	30
178	General Strategy for Ordered Noncovalent Protein Assembly on Well-Defined Nanoscaffolds. Biomacromolecules, 2013, 14, 4351-4359.	5.4	29
179	Construction of a Multifunctional Enzyme Complex via the Strain-Promoted Azide–Alkyne Cycloaddition. Bioconjugate Chemistry, 2013, 24, 987-996.	3.6	29
180	Evidence that the catenane form of CS2 hydrolase is not an artefact. Chemical Communications, 2013, 49, 7770.	4.1	29

#	Article	IF	CITATIONS
181	Shape characterization of polymersome morphologies via light scattering techniques. Polymer, 2016, 107, 445-449.	3.8	29
182	Synthesis of DIBAC analogues with excellent SPAAC rate constants. Organic and Biomolecular Chemistry, 2014, 12, 5031-5037.	2.8	28
183	Acidâ€Activatable Transmorphic Peptideâ€Based Nanomaterials for Photodynamic Therapy. Angewandte Chemie, 2020, 132, 20763-20769.	2.0	28
184	Convenient Solid-Phase Synthesis of Ureido-Pyrimidinone Modified Peptides. European Journal of Organic Chemistry, 2007, 2007, 3622-3632.	2.4	27
185	Site-specific peptide and protein immobilization on surface plasmon resonance chips via strain-promoted cycloaddition. Lab on A Chip, 2013, 13, 1863.	6.0	27
186	Coiledâ€Coilâ€Mediated Activation of Oligoarginine Cellâ€Penetrating Peptides. ChemBioChem, 2017, 18, 185-188.	2.6	27
187	Synthesis and Controlled Polymerisation of a Novel Gramicidin S Analogue. Macromolecular Rapid Communications, 2005, 26, 1336-1340.	3.9	26
188	Elastin-like polypeptides of different molecular weights show independent transition temperatures when mixed. Soft Matter, 2009, 5, 4305.	2.7	26
189	Elastin-based stimuli-responsive gold nanoparticles. Chemical Communications, 2010, 46, 3071.	4.1	26
190	Simple and Efficient Solid-Phase Preparation of Azido-peptides. Organic Letters, 2012, 14, 2330-2333.	4.6	26
191	α ₃ β ₁ Integrin-Targeting Polymersomal Docetaxel as an Advanced Nanotherapeutic for Nonsmall Cell Lung Cancer Treatment. ACS Applied Materials & Diterfaces, 2020, 12, 14905-14913.	8.0	26
192	Intravitreal Polymeric Nanocarriers with Long Ocular Retention and Targeted Delivery to the Retina and Optic Nerve Head Region. Pharmaceutics, 2021, 13, 445.	4. 5	26
193	Patterns of Diacetylene-Containing Peptide Amphiphiles Using Polarization Holography. Journal of the American Chemical Society, 2009, 131, 15014-15017.	13.7	25
194	Engineering of Biocompatible Coacervate-Based Synthetic Cells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 7879-7889.	8.0	25
195	Twin-Engine Janus Supramolecular Nanomotors with Counterbalanced Motion. Journal of the American Chemical Society, 2022, 144, 11246-11252.	13.7	25
196	Shedding the hydrophilic mantle of polymersomes. Polymer Chemistry, 2011, 2, 550-552.	3.9	24
197	Metalâ€Ionâ€Induced Formation and Stabilization of Protein Cages Based on the Cowpea Chlorotic Mottle Virus. Small, 2011, 7, 911-919.	10.0	24
198	Spontaneous shape changes in polymersomes via polymer/polymer segregation. Polymer Chemistry, 2014, 5, 489-501.	3.9	24

#	Article	IF	Citations
199	Enzyme-Activatable Cell-Penetrating Peptides through a Minimal Side Chain Modification. Bioconjugate Chemistry, 2015, 26, 850-856.	3.6	24
200	Chemoenzymatic flow cascade for the synthesis of protected mandelonitrile derivatives. Organic and Biomolecular Chemistry, 2015, 13, 1634-1638.	2.8	24
201	Versatile Reversible Cross-Linking Strategy to Stabilize CCMV Virus Like Particles for Efficient <i>siRNA</i> Delivery. Bioconjugate Chemistry, 2019, 30, 3069-3077.	3.6	24
202	Bone-Targeting Prodrug Mesoporous Silica-Based Nanoreactor with Reactive Oxygen Species Burst for Enhanced Chemotherapy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 34630-34642.	8.0	24
203	pH-Induced Transformation of Biodegradable Multilamellar Nanovectors for Enhanced Tumor Penetration. ACS Macro Letters, 2018, 7, 1394-1399.	4.8	23
204	ATPâ€Mediated Transient Behavior of Stomatocyte Nanosystems. Angewandte Chemie, 2019, 131, 13247-13252.	2.0	23
205	Octa-arginine boosts the penetration of elastin-like polypeptide nanoparticles in 3D cancer models. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 137, 175-184.	4.3	23
206	Development of Morphologically Discrete PEG–PDLLA Nanotubes for Precision Nanomedicine. Biomacromolecules, 2019, 20, 177-183.	5.4	23
207	Engineering transient dynamics of artificial cells by stochastic distribution of enzymes. Nature Communications, 2021, 12, 6897.	12.8	23
208	Clickable Enzyme-Linked Immunosorbent Assay. Biomacromolecules, 2011, 12, 3692-3697.	5.4	22
209	A Comparison of Triazoleâ€forming Bioconjugation Techniques for Constructing Combâ€Shaped Peptide–Polymer Bioconjugates. Macromolecular Rapid Communications, 2011, 32, 203-208.	3.9	22
210	Ethyl diazoacetate synthesis in flow. Beilstein Journal of Organic Chemistry, 2013, 9, 1813-1818.	2.2	22
211	Selfâ€Regulated and Temporal Control of a "Breathing―Microgel Mediated by Enzymatic Reaction. Angewandte Chemie, 2017, 129, 12755-12759.	2.0	22
212	DNAâ€Mediated Protein Shuttling between Coacervateâ€Based Artificial Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	22
213	Adaptive Polymeric Assemblies for Applications in Biomimicry and Nanomedicine. Biomacromolecules, 2019, 20, 4053-4064.	5.4	21
214	Single enzyme loaded nanoparticles for combinational ultrasound-guided focused ultrasound ablation and hypoxia-relieved chemotherapy. Theranostics, 2019, 9, 8048-8060.	10.0	21
215	<i>Compartmentalized</i> cross-linked enzymatic <i>nano</i> -aggregates (<i>c</i> -CLE <i>n</i> A) for efficient in-flow biocatalysis. Chemical Science, 2020, 11, 2765-2769.	7.4	21
216	Stereoselective Incorporation of an Unsaturated Isoleucine Analogue into a Protein Expressed in E. coli. ChemBioChem, 2006, 7, 83-87.	2.6	20

#	Article	IF	Citations
217	Synergy between chemo- and bio-catalysts in multi-step transformations. Organic and Biomolecular Chemistry, 2009, 7, 2926.	2.8	20
218	Polymerization-Induced Color Changes of Polydiacetylene-Containing Liposomes and Peptide Amphiphile Fibers. Langmuir, 2012, 28, 2049-2055.	3.5	20
219	Multifaceted cell mimicry in coacervate-based synthetic cells. Emerging Topics in Life Sciences, 2019, 3, 567-571.	2.6	20
220	Biodegradable, Drug‣oaded Nanovectors via Direct Hydration as a New Platform for Cancer Therapeutics. Small, 2018, 14, e1703774.	10.0	19
221	Investigating the self-assembly and shape transformation of poly(ethylene glycol)-b-poly(d,l-lactide) (PEG-PDLLA) polymersomes by tailoring solvent-polymer interactions. Polymer Chemistry, 2020, 11, 275-280.	3.9	19
222	Nanoparticles based on natural, engineered or synthetic proteins and polypeptides for drug delivery applications. International Journal of Pharmaceutics, 2020, 586, 119537.	5.2	19
223	Copper-free click chemistry on polymersomes: pre- vs. post-self-assembly functionalisation. Polymer Chemistry, 2012, 3, 1783-1795.	3.9	18
224	Functional Interactions Between Bottomâ€Up Synthetic Cells and Living Matter for Biomedical Applications. ChemSystemsChem, 2021, 3, e2100009.	2.6	18
225	Polymer Protein Hybrids. Macromolecular Symposia, 2005, 225, 1-8.	0.7	17
226	Aqueous asymmetric aldol reactions in polymersome membranes. Polymer Chemistry, 2015, 6, 5358-5361.	3.9	17
227	Expansion of the assembly of cowpea chlorotic mottle virus towards non-native and physiological conditions. Tetrahedron, 2017, 73, 4968-4971.	1.9	17
228	Molecular Programming of Biodegradable Nanoworms via Ionically Induced Morphology Switch toward Asymmetric Therapeutic Carriers. Small, 2019, 15, 1901849.	10.0	17
229	Screening of functional solvent system for automatic aldehyde and ketone separation in aldol reaction: A combined COSMO-RS and experimental approach. Chemical Engineering Journal, 2020, 385, 123399.	12.7	17
230	Engineered protein cages for selective heparin encapsulation. Journal of Materials Chemistry B, 2021, 9, 1272-1276.	5.8	17
231	Cucurbit-Like Polymersomes with Aggregation-Induced Emission Properties Show Enzyme-Mediated Motility. ACS Nano, 2021, 15, 18270-18278.	14.6	17
232	Controlled disassembly of peptide amphiphile fibres. Journal of Peptide Science, 2008, 14, 127-133.	1.4	16
233	Modular, Bioorthogonal Strategy for the Controlled Loading of Cargo into a Protein Nanocage. Bioconjugate Chemistry, 2018, 29, 1186-1193.	3.6	16
234	Chemoenzymatic Synthesis of Sialic Acid Derivatives Using Immobilized <i>Nâ€</i> Acetylneuraminate Lyase in a Continuous Flow Reactor. Advanced Synthesis and Catalysis, 2019, 361, 2443-2447.	4.3	16

#	Article	IF	Citations
235	Observing individual generations in poly(propyleneimine) dendrimers with natural abundance ¹⁵ Nâ€NMR spectroscopy. Recueil Des Travaux Chimiques Des Pays-Bas, 1994, 113, 573-574.	0.0	15
236	Evaluation of dextran(ethylene glycol) hydrogel films for giant unilamellar lipid vesicle production and their application for the encapsulation of polymersomes. Soft Matter, 2017, 13, 5580-5588.	2.7	15
237	Alendronate-Functionalized Poly(2-oxazoline)s with Tunable Affinity for Calcium Cations. Biomacromolecules, 2019, 20, 2913-2921.	5.4	15
238	Tuning Size and Morphology of mPEG-b-p(HPMA-Bz) Copolymer Self-Assemblies Using Microfluidics. Polymers, 2020, 12, 2572.	4.5	15
239	Refining the Design of Diblock Elastin-Like Polypeptides for Self-Assembly into Nanoparticles. Polymers, 2021, 13, 1470.	4.5	15
240	Noncovalent synthesis of supramolecular dendritic architectures in water. Journal of Polymer Science Part A, 2005, 43, 6431-6437.	2.3	14
241	Dynamically functionalized polymersomes viahydrazone exchange. Polymer Chemistry, 2013, 4, 1345-1350.	3.9	14
242	The influence of amino acid sequence on structure and morphology of polydiacetylene containing peptide fibres. Soft Matter, 2015, 11, 1335-1344.	2.7	14
243	Photoactivated Polymersome Nanomotors: Traversing Biological Barriers. Angewandte Chemie, 2020, 132, 17066-17073.	2.0	14
244	Mechanical and thermal stabilities of peptide amphiphile fibres. Soft Matter, 2011, 7, 9737.	2.7	13
245	Sub-Micron Polymeric Stomatocytes as Promising Templates for Confined Crystallization and Diffraction Experiments. Small, 2017, 13, 1700642.	10.0	13
246	Alternative application of an affinity purification tag: hexahistidines in ester hydrolysis. Scientific Reports, 2017, 7, 14772.	3.3	13
247	Polymersomes as a potential platform for cancer immunotherapy. Materials Today Advances, 2022, 13, 100203.	5.2	13
248	The Dynamics of Viruslike Capsid Assembly and Disassembly. Journal of the American Chemical Society, 2022, 144, 12608-12612.	13.7	13
249	Temperature-controlled positioning of fusion proteins in microreactors. Soft Matter, 2009, 5, 2261.	2.7	12
250	Crosslinked ELP-based nanoparticles, using the strain promoted azide–alkyne cycloaddition. European Polymer Journal, 2015, 62, 386-393.	5.4	12
251	Click-MS: Tagless Protein Enrichment Using Bioorthogonal Chemistry for Quantitative Proteomics. ACS Chemical Biology, 2016, 11, 3245-3250.	3.4	12
252	Adaptive Polymersome and Micelle Morphologies in Anticancer Nanomedicine: From Design Rationale to Fabrication and Proofâ€ofâ€Concept Studies. Advanced Therapeutics, 2018, 1, 1800068.	3.2	12

#	Article	IF	CITATIONS
253	Selfâ€Assembly and Stabilization of Hybrid Cowpea Chlorotic Mottle Virus Particles under Nearly Physiological Conditions. Chemistry - an Asian Journal, 2018, 13, 3518-3525.	3.3	12
254	Temperature-Induced Collapse of Elastin-like Peptides Studied by 2DIR Spectroscopy. Journal of Physical Chemistry B, 2018, 122, 8243-8254.	2.6	12
255	Imaging, quantitation and kinetic modelling of intravitreal nanomaterials. International Journal of Pharmaceutics, 2022, 621, 121800.	5.2	12
256	A Modular and Noncovalent Transduction System for Leucineâ€Zipperâ€Tagged Proteins. ChemBioChem, 2011, 12, 2294-2297.	2.6	11
257	A Oneâ€Pot Oxidation/Enantioselective Oxaâ€Michael Cascade. European Journal of Organic Chemistry, 2014, 2014, 2892-2898.	2.4	11
258	Continuous fabrication of polymeric vesicles and nanotubes with fluidic channels. Nanoscale, 2017, 9, 4875-4880.	5 . 6	11
259	Wormlike Nanovector with Enhanced Drug Loading Using Blends of Biodegradable Block Copolymers. Biomacromolecules, 2020, 21, 2199-2207.	5.4	11
260	Dual Site-Selective Presentation of Functional Handles on Protein-Engineered Cowpea Chlorotic Mottle Virus-Like Particles. Bioconjugate Chemistry, 2021, 32, 958-963.	3.6	11
261	Pulsating vesicles. Nature, 2009, 461, 45-47.	27.8	10
262	Polymers at the Interface with Biology. Biomacromolecules, 2018, 19, 3151-3162.	5.4	10
262	Polymers at the Interface with Biology. Biomacromolecules, 2018, 19, 3151-3162. Boneâ€Adhesive Hydrogels Based on Dual Crosslinked Poly(2â€oxazoline)s. Macromolecular Bioscience, 2021, 21, e2100257.	5.4	10
	Boneâ€Adhesive Hydrogels Based on Dual Crosslinked Poly(2â€oxazoline)s. Macromolecular Bioscience,		
263	Boneâ∈Adhesive Hydrogels Based on Dual Crosslinked Poly(2â€oxazoline)s. Macromolecular Bioscience, 2021, 21, e2100257.	4.1	10
263	Boneâ∈Adhesive Hydrogels Based on Dual Crosslinked Poly(2â∈oxazoline)s. Macromolecular Bioscience, 2021, 21, e2100257. Encoding synthetic polymers. Nature Chemical Biology, 2008, 4, 272-273.	4.1 8.0	9
263 264 265	Boneâ€Adhesive Hydrogels Based on Dual Crosslinked Poly(2â€oxazoline)s. Macromolecular Bioscience, 2021, 21, e2100257. Encoding synthetic polymers. Nature Chemical Biology, 2008, 4, 272-273. Sorting Catalytically Active Polymersome Nanoreactors by Flow Cytometry. Small, 2009, 5, 1138-1143. Potassium formate as a small molecule switch: controlling oxidation–reduction behaviour in a	4.1 8.0 10.0	10 9 9
263 264 265 266	Boneâ€Adhesive Hydrogels Based on Dual Crosslinked Poly(2â€oxazoline)s. Macromolecular Bioscience, 2021, 21, e2100257. Encoding synthetic polymers. Nature Chemical Biology, 2008, 4, 272-273. Sorting Catalytically Active Polymersome Nanoreactors by Flow Cytometry. Small, 2009, 5, 1138-1143. Potassium formate as a small molecule switch: controlling oxidation–reduction behaviour in a two-step sequence. Chemical Communications, 2013, 49, 3143. Scale-Up of the Manufacturing Process To Produce Docetaxel-Loaded mPEG- <i>b</i> p(HPMA-Bz) Block Copolymer Micelles for Pharmaceutical Applications. Organic Process Research and Development,	4.1 8.0 10.0 4.1	10 9 9
264 265 266 267	Boneâ€Adhesive Hydrogels Based on Dual Crosslinked Poly(2â€oxazoline)s. Macromolecular Bioscience, 2021, 21, e2100257. Encoding synthetic polymers. Nature Chemical Biology, 2008, 4, 272-273. Sorting Catalytically Active Polymersome Nanoreactors by Flow Cytometry. Small, 2009, 5, 1138-1143. Potassium formate as a small molecule switch: controlling oxidation–reduction behaviour in a two-step sequence. Chemical Communications, 2013, 49, 3143. Scale-Up of the Manufacturing Process To Produce Docetaxel-Loaded mPEG-⟨i⟩b⟨li⟩-p(HPMA-Bz) Block Copolymer Micelles for Pharmaceutical Applications. Organic Process Research and Development, 2019, 23, 2707-2715.	4.1 8.0 10.0 4.1	10 9 9 9

#	Article	IF	CITATIONS
271	Synthesis of Methoxyisopropyl (MIP)-Protected (R)-Mandelonitrile and Derivatives in a Flow Reactor. Journal of Flow Chemistry, 2012, 2, 124-128.	1.9	8
272	Thermodynamic investigation of Z33-antibody interaction leads to selective purification of human antibodies. Journal of Biotechnology, 2014, 179, 32-41.	3.8	8
273	Virus-like particles as crosslinkers in fibrous biomimetic hydrogels: approaches towards capsid rupture and gel repair. Soft Matter, 2018, 14, 1442-1448.	2.7	8
274	A Revised Modular Approach to (–)â€∢i>transà6€î" ⁸ â€īHC and Derivatives Through Lateâ€6tag Suzuki–Miyaura Crossâ€Coupling Reactions. European Journal of Organic Chemistry, 2019, 2019, 2289-2296.	ge 2.4	8
275	Degradation and excretion of poly(2-oxazoline) based hemostatic materials. Materialia, 2020, 12, 100763.	2.7	8
276	Pathway dependent shape-transformation of azide-decorated polymersomes. Chemical Communications, 2020, 56, 2127-2130.	4.1	8
277	Influence of surface charge on the formulation of elongated PEG- <i>b</i> -PDLLA nanoparticles. Polymer Chemistry, 2020, 11, 2775-2780.	3.9	8
278	Reversibly selfâ€assembled pHâ€responsive PEGâ€p(CLâ€gâ€TMC) polymersomes. Journal of Polymer Science, 2059, 1241-1252.)2 <u>1</u> 3.8	8
279	Micro―and Nanocapsules: A Lively Field of Research. Macromolecular Bioscience, 2010, 10, 463-464.	4.1	7
280	Single Enzyme Nanoparticles with Improved Biocatalytic Activity through Protein Entrapment in a Surfactant Shell. Biomacromolecules, 2021, 22, 1159-1166.	5.4	7
281	Thrombin generation test in microfluidic systems. Journal of Applied Physics, 2009, 105, 102012.	2.5	6
282	Quick-and-easy preparation and purification of quantum dot–loaded liposomes. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	6
283	Catenane versus ring: do both assemblies of CS2 hydrolase exhibit the same stability and catalytic activity?. Chemical Science, 2014, 5, 2879.	7.4	6
284	Dynamic spatial and structural organization in artificial cells regulates signal processing by protein scaffolding. Chemical Science, 2020, 11, 12829-12834.	7.4	6
285	Bone-adhesive barrier membranes based on alendronate-functionalized poly(2-oxazoline)s. Journal of Materials Chemistry B, 2021, 9, 5848-5860.	5.8	6
286	Peptide-based supramolecular assembly drugs toward cancer theranostics. Expert Opinion on Drug Delivery, 2022, 19, 847-860.	5.0	6
287	Residue-Specific Incorporation of Noncanonical Amino Acids for Protein Engineering. Methods in Molecular Biology, 2018, 1728, 137-145.	0.9	5
288	One-flow synthesis of tetrahydrocannabinol and cannabidiol using homo- and heterogeneous Lewis acids. Journal of Flow Chemistry, 2021, 11, 99-105.	1.9	5

#	Article	IF	Citations
289	Cowpea Chlorotic Mottle Virusâ€Like Particles as Potential Platform for Antisense Oligonucleotide Delivery in Posterior Segment Ocular Diseases. Macromolecular Bioscience, 2021, 21, 2100095.	4.1	5
290	Bimodal Targeting of Human Leukocytes by Fc- and CpG-Decorated Polymersomes to Tune Immune Induction. Biomacromolecules, 2021, 22, 4422-4433.	5.4	5
291	Synthesis of amphiphilic polystyrene–ionene diblock copolymers with controlled block lengths. Polymer International, 1993, 31, 317-322.	3.1	4
292	Compartmentalized cross-linked enzyme nano aggregates (<i><i></i>-CLE<i>n</i>As) toward pharmaceutical transformations. RSC Advances, 2021, 11, 21857-21861.</i>	3.6	4
293	Biodegradable Polymersomes with Structure Inherent Fluorescence and Targeting Capacity for Enhanced Photoâ€Dynamic Therapy. Angewandte Chemie, 2021, 133, 17770-17778.	2.0	4
294	Bioinspired Triblock Copolymers Prepared by Atom Transfer Radical Copolymerization. ACS Symposium Series, 2003, , 394-410.	0.5	3
295	Flexible peptide assembly. Nature, 2008, 456, 186-187.	27.8	3
296	Aqueous reductive amination using a dendritic metal catalyst in a dialysis bag. Beilstein Journal of Organic Chemistry, 2013, 9, 960-965.	2.2	3
297	Editorial for Virtual Issue on Polymer Bioconjugates in Biology and Medicine. ACS Macro Letters, 2017, 6, 144-144.	4.8	3
298	Dynamic Assembly of Micellar Mesostructures. ChemSystemsChem, 2020, 2, e1900049.	2.6	3
299	Terpolymer-stabilized complex coacervates: A robust and versatile synthetic cell platform. Methods in Enzymology, 2021, 646, 51-82.	1.0	3
300	Bioorthogonal Chemistry and Bioconjugation: Synergistic Tools for Biology and Biomedicine. Bioconjugate Chemistry, 2021, 32, 1409-1410.	3.6	3
301	Expanding the Scope of Protein Biosynthesis by Altering the Methionyl-tRNA Synthetase Activity of a Bacterial Expression Host. Angewandte Chemie - International Edition, 2000, 39, 2148-2152.	13.8	3
302	Editorial for Virtual Issue on Polymer Bioconjugates in Biology and Medicine. Chemical Reviews, 2017, 117, 900-900.	47.7	2
303	A Dibenzoazacyclooctyne as a Reactive Chain Stopper for [2]Rotaxanes. European Journal of Organic Chemistry, 2017, 2017, 3107-3113.	2.4	2
304	Translational Research: Bridging the Gap between Fundamental Research and the Clinic. Bioconjugate Chemistry, 2019, 30, 2989-2990.	3.6	2
305	Therapeutic Stomatocytes with Aggregation Induced Emission for Intracellular Delivery. Pharmaceutics, 2021, 13, 1833.	4.5	2
306	DNAâ€Mediated Protein Shuttling between Coacervateâ€Based Artificial Cells. Angewandte Chemie, 2022, 134, .	2.0	2

#	Article	IF	CITATIONS
307	Protocol for the Preparation of Stimuli-Responsive Gold Nanoparticles Capped with Elastin-Based Pentapeptides. Methods in Molecular Biology, 2013, 991, 353-362.	0.9	1
308	Influence of azide incorporation on binding affinity by small papain inhibitors. Bioorganic and Medicinal Chemistry, 2014, 22, 5593-5603.	3.0	1
309	Editorial for Virtual Issue on Polymer Bioconjugates in Biology and Medicine. Bioconjugate Chemistry, 2017, 28, 282-282.	3.6	1
310	Insight into N-terminal localization and dynamics of engineered virus-like particles. RSC Advances, 2020, 10, 38774-38781.	3.6	1
311	Functional Nanomaterials using the Cu-Catalyzed Huisgen Cycloaddition Reaction. , 0, , 255-289.		1
312	AFM Studies of \hat{I}^2 -Sheet Block Copolymers at Solid Surfaces: High-Resolution Structures and Aggregation Dynamics. Australian Journal of Chemistry, 2006, 59, 560.	0.9	1
313	Editorial. Bioconjugate Chemistry, 2015, 26, 163-165.	3.6	0
314	Science in a Global Community. Bioconjugate Chemistry, 2017, 28, 279-281.	3.6	0
315	Editorial for Virtual Issue on Polymer Bioconjugates in Biology and Medicine. Biomacromolecules, 2017, 18, 315-315.	5 . 4	O
316	Polymer Science and Technology in the Institute for Complex Molecular Systems at Eindhoven University of Technology. Journal of Polymer Science, 2021, 59, 1129-1130.	3.8	0
317	Conjugates: Biosynthetic–Synthetic Polymer Based. , 2017, , 340-361.		0
318	2.6 CuAAC Applications in Macromolecules, Polymers, Nanoparticles, and Supramolecular Chemistry., 2022, , .		0