Seth J Parker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1423658/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transsulfuration, minor player or crucial for cysteine homeostasis in cancer. Trends in Cell Biology, 2022, 32, 800-814.	7.9	41
2	Metabolic reprogramming of tumor-associated macrophages by collagen turnover promotes fibrosis in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119168119.	7.1	31
3	No Back-up Plan: Loss of Isozyme Diversity as a Promising Therapeutic Strategy for Cancer. Cancer Research, 2022, 82, 1695-1697.	0.9	0
4	Autophagy is required for proper cysteine homeostasis in pancreatic cancer through regulation of SLC7A11. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	48
5	Transporters at the Interface between Cytosolic and Mitochondrial Amino Acid Metabolism. Metabolites, 2021, 11, 112.	2.9	21
6	Spontaneous hydrolysis and spurious metabolic properties of $\hat{I}\pm$ -ketoglutarate esters. Nature Communications, 2021, 12, 4905.	12.8	17
7	Disruption of redox homeostasis for combinatorial drug efficacy in K-Ras tumors as revealed by metabolic connectivity profiling. Cancer & Metabolism, 2020, 8, 22.	5.0	10
8	Respiratory Supercomplexes Promote Mitochondrial Efficiency and Growth in Severely Hypoxic Pancreatic Cancer. Cell Reports, 2020, 33, 108231.	6.4	70
9	Selective Alanine Transporter Utilization Creates a Targetable Metabolic Niche in Pancreatic Cancer. Cancer Discovery, 2020, 10, 1018-1037.	9.4	104
10	Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature, 2020, 581, 100-105.	27.8	628
11	Deuterium Tracing to Interrogate Compartment-Specific NAD(P)H Metabolism in Cultured Mammalian Cells. Methods in Molecular Biology, 2020, 2088, 51-71.	0.9	5
12	KRAS4A directly regulates hexokinase 1. Nature, 2019, 576, 482-486.	27.8	129
13	Oncogenic R132 IDH1 Mutations Limit NADPH for De Novo Lipogenesis through (D)2-Hydroxyglutarate Production in Fibrosarcoma Cells. Cell Reports, 2018, 25, 1018-1026.e4.	6.4	56
14	Transaminase Inhibition by 2-Hydroxyglutarate Impairs Glutamate Biosynthesis and Redox Homeostasis in Glioma. Cell, 2018, 175, 101-116.e25.	28.9	234
15	LKB1 promotes metabolic flexibility in response to energy stress. Metabolic Engineering, 2017, 43, 208-217.	7.0	42
16	Posttranscriptional Upregulation of IDH1 by HuR Establishes a Powerful Survival Phenotype in Pancreatic Cancer Cells. Cancer Research, 2017, 77, 4460-4471.	0.9	87
17	Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature, 2016, 532, 255-258.	27.8	472
18	Distinct Metabolic States Can Support Self-Renewal and Lipogenesis in Human Pluripotent Stem Cells under Different Culture Conditions. Cell Reports, 2016, 16, 1536-1547.	6.4	112

Seth J Parker

#	Article	IF	CITATIONS
19	Chasing One-Carbon Units to Understand the Role of Serine in Epigenetics. Molecular Cell, 2016, 61, 185-186.	9.7	25
20	Metabolic consequences of oncogenic IDH mutations. , 2015, 152, 54-62.		125
21	Loss of succinate dehydrogenase activity results in dependency on pyruvate carboxylation for cellular anabolism. Nature Communications, 2015, 6, 8784.	12.8	169
22	Regulation of Substrate Utilization by the Mitochondrial Pyruvate Carrier. Molecular Cell, 2014, 56, 425-435.	9.7	243
23	IDH1 Mutations Alter Citric Acid Cycle Metabolism and Increase Dependence on Oxidative Mitochondrial Metabolism. Cancer Research, 2014, 74, 3317-3331.	0.9	224
24	Tracing Compartmentalized NADPH Metabolism in the Cytosol and Mitochondria of Mammalian Cells. Molecular Cell, 2014, 55, 253-263.	9.7	477
25	Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature, 2013, 497, 633-637.	27.8	1,316