Seth J Parker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1423658/publications.pdf

Version: 2024-02-01

25 papers 4,686 citations

394421 19 h-index 642732 23 g-index

25 all docs

25 docs citations

25 times ranked

8628 citing authors

#	Article	IF	CITATIONS
1	Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature, 2013, 497, 633-637.	27.8	1,316
2	Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature, 2020, 581, 100-105.	27.8	628
3	Tracing Compartmentalized NADPH Metabolism in the Cytosol and Mitochondria of Mammalian Cells. Molecular Cell, 2014, 55, 253-263.	9.7	477
4	Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature, 2016, 532, 255-258.	27.8	472
5	Regulation of Substrate Utilization by the Mitochondrial Pyruvate Carrier. Molecular Cell, 2014, 56, 425-435.	9.7	243
6	Transaminase Inhibition by 2-Hydroxyglutarate Impairs Glutamate Biosynthesis and Redox Homeostasis in Glioma. Cell, 2018, 175, 101-116.e25.	28.9	234
7	IDH1 Mutations Alter Citric Acid Cycle Metabolism and Increase Dependence on Oxidative Mitochondrial Metabolism. Cancer Research, 2014, 74, 3317-3331.	0.9	224
8	Loss of succinate dehydrogenase activity results in dependency on pyruvate carboxylation for cellular anabolism. Nature Communications, 2015, 6, 8784.	12.8	169
9	KRAS4A directly regulates hexokinase 1. Nature, 2019, 576, 482-486.	27.8	129
10	Metabolic consequences of oncogenic IDH mutations. , 2015, 152, 54-62.		125
10	Metabolic consequences of oncogenic IDH mutations. , 2015, 152, 54-62. Distinct Metabolic States Can Support Self-Renewal and Lipogenesis in Human Pluripotent Stem Cells under Different Culture Conditions. Cell Reports, 2016, 16, 1536-1547.	6.4	125
	Distinct Metabolic States Can Support Self-Renewal and Lipogenesis in Human Pluripotent Stem Cells	6.4 9.4	
11	Distinct Metabolic States Can Support Self-Renewal and Lipogenesis in Human Pluripotent Stem Cells under Different Culture Conditions. Cell Reports, 2016, 16, 1536-1547. Selective Alanine Transporter Utilization Creates a Targetable Metabolic Niche in Pancreatic Cancer.		112
11 12	Distinct Metabolic States Can Support Self-Renewal and Lipogenesis in Human Pluripotent Stem Cells under Different Culture Conditions. Cell Reports, 2016, 16, 1536-1547. Selective Alanine Transporter Utilization Creates a Targetable Metabolic Niche in Pancreatic Cancer. Cancer Discovery, 2020, 10, 1018-1037. Posttranscriptional Upregulation of IDH1 by HuR Establishes a Powerful Survival Phenotype in	9.4	112
11 12 13	Distinct Metabolic States Can Support Self-Renewal and Lipogenesis in Human Pluripotent Stem Cells under Different Culture Conditions. Cell Reports, 2016, 16, 1536-1547. Selective Alanine Transporter Utilization Creates a Targetable Metabolic Niche in Pancreatic Cancer. Cancer Discovery, 2020, 10, 1018-1037. Posttranscriptional Upregulation of IDH1 by HuR Establishes a Powerful Survival Phenotype in Pancreatic Cancer Cells. Cancer Research, 2017, 77, 4460-4471. Respiratory Supercomplexes Promote Mitochondrial Efficiency and Growth in Severely Hypoxic	9.4 0.9	112 104 87
11 12 13	Distinct Metabolic States Can Support Self-Renewal and Lipogenesis in Human Pluripotent Stem Cells under Different Culture Conditions. Cell Reports, 2016, 16, 1536-1547. Selective Alanine Transporter Utilization Creates a Targetable Metabolic Niche in Pancreatic Cancer. Cancer Discovery, 2020, 10, 1018-1037. Posttranscriptional Upregulation of IDH1 by HuR Establishes a Powerful Survival Phenotype in Pancreatic Cancer Cells. Cancer Research, 2017, 77, 4460-4471. Respiratory Supercomplexes Promote Mitochondrial Efficiency and Growth in Severely Hypoxic Pancreatic Cancer. Cell Reports, 2020, 33, 108231. Oncogenic R132 IDH1 Mutations Limit NADPH for De Novo Lipogenesis through (D)2-Hydroxyglutarate	9.4 0.9 6.4	112 104 87 70
11 12 13 14	Distinct Metabolic States Can Support Self-Renewal and Lipogenesis in Human Pluripotent Stem Cells under Different Culture Conditions. Cell Reports, 2016, 16, 1536-1547. Selective Alanine Transporter Utilization Creates a Targetable Metabolic Niche in Pancreatic Cancer. Cancer Discovery, 2020, 10, 1018-1037. Posttranscriptional Upregulation of IDH1 by HuR Establishes a Powerful Survival Phenotype in Pancreatic Cancer Cells. Cancer Research, 2017, 77, 4460-4471. Respiratory Supercomplexes Promote Mitochondrial Efficiency and Growth in Severely Hypoxic Pancreatic Cancer. Cell Reports, 2020, 33, 108231. Oncogenic R132 IDH1 Mutations Limit NADPH for De Novo Lipogenesis through (D)2-Hydroxyglutarate Production in Fibrosarcoma Cells. Cell Reports, 2018, 25, 1018-1026.e4. Autophagy is required for proper cysteine homeostasis in pancreatic cancer through regulation of	9.4 0.9 6.4	112 104 87 70 56

SETH J PARKER

#	Article	IF	CITATION
19	Metabolic reprogramming of tumor-associated macrophages by collagen turnover promotes fibrosis in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119168119.	7.1	31
20	Chasing One-Carbon Units to Understand the Role of Serine in Epigenetics. Molecular Cell, 2016, 61, 185-186.	9.7	25
21	Transporters at the Interface between Cytosolic and Mitochondrial Amino Acid Metabolism. Metabolites, 2021, 11, 112.	2.9	21
22	Spontaneous hydrolysis and spurious metabolic properties of \hat{l}_{\pm} -ketoglutarate esters. Nature Communications, 2021, 12, 4905.	12.8	17
23	Disruption of redox homeostasis for combinatorial drug efficacy in K-Ras tumors as revealed by metabolic connectivity profiling. Cancer & Metabolism, 2020, 8, 22.	5.0	10
24	Deuterium Tracing to Interrogate Compartment-Specific NAD(P)H Metabolism in Cultured Mammalian Cells. Methods in Molecular Biology, 2020, 2088, 51-71.	0.9	5
25	No Back-up Plan: Loss of Isozyme Diversity as a Promising Therapeutic Strategy for Cancer. Cancer Research, 2022, 82, 1695-1697.	0.9	0