
Tzvetanka D Dinkova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1423495/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Translational enhancement conferred by the 3' untranslated region of a transcript encoding a group 6 late embryogenesis abundant protein. Environmental and Experimental Botany, 2021, 182, 104310.	4.2	0
2	Time to Wake Up: Epigenetic and Small-RNA-Mediated Regulation during Seed Germination. Plants, 2021, 10, 236.	3.5	19
3	MicroRNA Zma-miR528 Versatile Regulation on Target mRNAs during Maize Somatic Embryogenesis. International Journal of Molecular Sciences, 2021, 22, 5310.	4.1	9
4	Arabidopsis thaliana elF4E1 and elF(iso)4E Participate in Cold Response and Promote Translation of Some Stress-Related mRNAs. Frontiers in Plant Science, 2021, 12, 698585.	3.6	3
5	TOR senses and regulates spermidine metabolism during seedling establishment and growth in maize and Arabidopsis. IScience, 2021, 24, 103260.	4.1	23
6	Differential gene expression of virulence factors modulates infectivity of Tcl Trypanosoma cruzi strains. Parasitology Research, 2020, 119, 3803-3815.	1.6	5
7	tasiR-ARFs Production and Target Regulation during In Vitro Maize Plant Regeneration. Plants, 2020, 9, 849.	3.5	4
8	Glucose modulates proliferation in root apical meristems via TOR in maize during germination. Plant Physiology and Biochemistry, 2020, 155, 126-135.	5.8	13
9	Quantification of Reducing Sugars Based on the Qualitative Technique of Benedict. ACS Omega, 2020, 5, 32403-32410.	3.5	28
10	Mayahuelin, a Type I Ribosome Inactivating Protein: Characterization, Evolution, and Utilization in Phylogenetic Analyses of Agave. Frontiers in Plant Science, 2020, 11, 573.	3.6	9
11	The accumulation of rotavirus NSP3 dimers does not correlate with the extent of host cell translation inhibition. Future Virology, 2020, 15, 565-576.	1.8	Ο
12	The explant developmental stage profoundly impacts small RNA-mediated regulation at the dedifferentiation step of maize somatic embryogenesis. Scientific Reports, 2019, 9, 14511.	3.3	22
13	Development-Related miRNA Expression and Target Regulation during Staggered In Vitro Plant Regeneration of Tuxpeño VS-535 Maize Cultivar. International Journal of Molecular Sciences, 2019, 20, 2079.	4.1	19
14	The Role of Small RNAs in Plant Somatic Embryogenesis. , 2019, , 311-338.		3
15	The Dmp8â€Dmp18 bicistron messenger RNA enables unusual translation during cellular stress. Journal of Cellular Biochemistry, 2019, 120, 3887-3897.	2.6	1
16	Small RNA differential expression and regulation in Tuxpeño maize embryogenic callus induction and establishment. Plant Physiology and Biochemistry, 2018, 122, 78-89.	5.8	22
17	Protein Disulfide Isomerase (PDI1-1) differential expression and modification in Mexican malting barley cultivars. PLoS ONE, 2018, 13, e0206470.	2.5	5
18	MicroRNA Expression and Regulation During Maize Somatic Embryogenesis. Methods in Molecular Biology, 2018, 1815, 397-410.	0.9	10

#	Article	IF	CITATIONS
19	Species A rotavirus NSP3 acquires its translation inhibitory function prior to stable dimer formation. PLoS ONE, 2017, 12, e0181871.	2.5	4

20 Identification of Proteins from Cap-Binding Complexes by Mass Spectrometry During Maize (Zea mays) Tj ETQq0 0 0 rgBT /Overlock 10

21	The Diversification of elF4E Family Members in Plants and Their Role in the Plant-Virus Interaction. , 2016, , 187-205.		7
22	Transformation of Plant Cell Suspension Cultures with Amine-Functionalized Multi-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2016, 16, 7461-7471.	0.9	7
23	Antagonism or synergism between papaya ringspot virus and papaya mosaic virus in Carica papaya is determined by their order of infection. Virology, 2016, 489, 179-191.	2.4	57
24	High-Throughput Profiling of Caenorhabditis elegans Starvation-Responsive microRNAs. PLoS ONE, 2015, 10, e0142262.	2.5	16
25	Maize miRNA and target regulation in response to hormone depletion and light exposure during somatic embryogenesis. Frontiers in Plant Science, 2015, 6, 555.	3.6	69
26	Comparative Transcriptome Analysis of the Cosmopolitan Marine Fungus <i>Corollospora maritima</i> Under Two Physiological Conditions. G3: Genes, Genomes, Genetics, 2015, 5, 1805-1814.	1.8	19
27	LIN-35/Rb Causes Starvation-Induced Germ Cell Apoptosis via CED-9/Bcl2 Downregulation in <i>Caenorhabditis elegans</i> . Molecular and Cellular Biology, 2014, 34, 2499-2516.	2.3	21
28	MicroRNA Expression and Regulation During Plant Somatic Embryogenesis. , 2014, , 111-123.		5
29	The Absence of Eukaryotic Initiation Factor eIF(iso)4E Affects the Systemic Spread of a Tobacco etch virus Isolate in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 2013, 26, 461-470.	2.6	42
30	Regulation of ribosome biogenesis in maize embryonic axes during germination. Biochimie, 2013, 95, 1871-1879.	2.6	12
31	Effect of insulin on the cell cycle of germinating maize seeds (<i>Zea mays</i> L.). Seed Science Research, 2013, 23, 3-14.	1.7	6
32	The Absence of Heat Shock Protein HSP101 Affects the Proteome of Mature and Germinating Maize Embryos. Journal of Proteome Research, 2012, 11, 3246-3258.	3.7	10
33	Translation Initiation Factor AtelF(iso)4E Is Involved in Selective mRNA Translation in Arabidopsis Thaliana Seedlings. PLoS ONE, 2012, 7, e31606.	2.5	38
34	Tight translational control by the initiation factors eIF4E and eIF(iso)4E is required for maize seed germination. Seed Science Research, 2011, 21, 85-93.	1.7	30
35	Approaches for Analyzing the Differential Activities and Functions of eIF4E Family Members. Methods in Enzymology, 2007, 429, 261-297.	1.0	11
36	Dissecting the TOR?S6K signal transduction pathway in maize seedlings: relevance on cell growth regulation. Physiologia Plantarum, 2007, 130, 1-10.	5.2	29

#	Article	IF	CITATIONS
37	Application of machine learning and visualization of heterogeneous datasets to uncover relationships between translation and developmental stage expression ofC. elegansmRNAs. Physiological Genomics, 2005, 21, 264-273.	2.3	14
38	Cap-independent translation of maize Hsp101. Plant Journal, 2005, 41, 722-731.	5.7	54
39	Translation of a Small Subset of Caenorhabditis elegans mRNAs Is Dependent on a Specific Eukaryotic Translation Initiation Factor 4E Isoform. Molecular and Cellular Biology, 2005, 25, 100-113.	2.3	88
40	Auxin stimulates S6 ribosomal protein phosphorylation in maize thereby affecting protein synthesis regulation. Physiologia Plantarum, 2002, 115, 291-297.	5.2	45
41	Expression of maize eukaryotic initiation factor (eIF) iso4E is regulated at the translational level. Biochemical Journal, 2000, 351, 825.	3.7	7
42	Expression of maize eukaryotic initiation factor (eIF) iso4E is regulated at the translational level. Biochemical Journal, 2000, 351, 825-831.	3.7	20
43	Differential expression and regulation of translation initiation factors -4E and -iso4E during maize germination. Physiologia Plantarum, 1999, 107, 419-425.	5.2	10
44	S6 ribosomal protein phosphorylation and translation of stored mRNA in maize. Biochimie, 1997, 79, 187-194.	2.6	20
45	Somaclonal variation as a source of resistance to eyespot disease of sugarcane. Plant Breeding, 1996, 115, 37-42.	1.9	34