Shigehiko Ogoh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/142310/publications.pdf

Version: 2024-02-01

190 7,312 45 78
papers citations h-index g-index

191 191 191 4629
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Utility of transcranial Doppler ultrasound for the integrative assessment of cerebrovascular function. Journal of Neuroscience Methods, 2011, 196, 221-237.	2.5	460
2	Cerebral blood flow during exercise: mechanisms of regulation. Journal of Applied Physiology, 2009, 107, 1370-1380.	2.5	401
3	The effect of changes in cardiac output on middle cerebral artery mean blood velocity at rest and during exercise. Journal of Physiology, 2005, 569, 697-704.	2.9	248
4	Influence of Changes in Blood Pressure on Cerebral Perfusion and Oxygenation. Hypertension, 2010, 55, 698-705.	2.7	239
5	Arterial baroreflex resetting during exercise: a current perspective. Experimental Physiology, 2006, 91, 37-49.	2.0	234
6	The distribution of blood flow in the carotid and vertebral arteries during dynamic exercise in humans. Journal of Physiology, 2011, 589, 2847-2856.	2.9	230
7	Elevated Aerobic Fitness Sustained Throughout the Adult Lifespan Is Associated With Improved Cerebral Hemodynamics. Stroke, 2013, 44, 3235-3238.	2.0	175
8	Differential blood flow responses to CO ₂ in human internal and external carotid and vertebral arteries. Journal of Physiology, 2012, 590, 3277-3290.	2.9	160
9	Autonomic Neural Control of the Cerebral Vasculature. Stroke, 2008, 39, 1979-1987.	2.0	153
10	Baroreflexâ€Mediated Changes in Cardiac Output and Vascular Conductance in Response to Alterations in Carotid Sinus Pressure during Exercise in Humans. Journal of Physiology, 2003, 550, 317-324.	2.9	134
11	Autonomic nervous system influence on arterial baroreflex control of heart rate during exercise in humans. Journal of Physiology, 2005, 566, 599-611.	2.9	132
12	Regulation of cerebral blood flow in mammals during chronic hypoxia: a matter of balance. Experimental Physiology, 2010, 95, 251-262.	2.0	131
13	Dynamic cerebral autoregulation during exhaustive exercise in humans. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H1461-H1467.	3.2	125
14	Regulatory Mechanisms of Cerebral Blood Flow During Exercise. Exercise and Sport Sciences Reviews, 2009, 37, 123-129.	3.0	114
15	Impaired cerebral haemodynamic function associated with chronic traumatic brain injury in professional boxers. Clinical Science, 2013, 124, 177-189.	4.3	111
16	Blood flow in internal carotid and vertebral arteries during orthostatic stress. Experimental Physiology, 2012, 97, 1272-1280.	2.0	107
17	Role of central command in carotid baroreflex resetting in humans during static exercise. Journal of Physiology, 2002, 543, 349-364.	2.9	102
18	Middle cerebral artery flow velocity and pulse pressure during dynamic exercise in humans. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H1526-H1531.	3.2	102

#	Article	IF	CITATIONS
19	Alterations in cerebral autoregulation and cerebral blood flow velocity during acute hypoxia: rest and exercise. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H976-H983.	3.2	101
20	Recent Insights into Carotid Baroreflex Function in Humans Using the Variable Pressure Neck Chamber. Experimental Physiology, 2003, 88, 671-680.	2.0	100
21	Relationship between cognitive function and regulation of cerebral blood flow. Journal of Physiological Sciences, 2017, 67, 345-351.	2.1	98
22	HIITing the brain with exercise: mechanisms, consequences and practical recommendations. Journal of Physiology, 2020, 598, 2513-2530.	2.9	92
23	Maintained exerciseâ€enhanced brain executive function related to cerebral lactate metabolism in men. FASEB Journal, 2018, 32, 1417-1427.	0.5	91
24	Exercise-induced oxidative-nitrosative stress is associated with impaired dynamic cerebral autoregulation and blood-brain barrier leakage. Experimental Physiology, 2011, 96, 1196-1207.	2.0	81
25	The effect of changes in cerebral blood flow on cognitive function during exercise. Physiological Reports, 2014, 2, e12163.	1.7	81
26	The effect of phenylephrine on arterial and venous cerebral blood flow in healthy subjects. Clinical Physiology and Functional Imaging, 2011, 31, 445-451.	1.2	80
27	Blood Flow Distribution during Heat Stress: Cerebral and Systemic Blood Flow. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1915-1920.	4.3	80
28	Carotid baroreflex responsiveness to headâ€up tiltâ€induced central hypovolaemia: effect of aerobic fitness. Journal of Physiology, 2003, 551, 601-608.	2.9	79
29	Haemodynamic changes during neck pressure and suction in seated and supine positions. Journal of Physiology, 2002, 540, 707-716.	2.9	78
30	Interaction between the ventilatory and cerebrovascular responses to hypo―and hypercapnia at rest and during exercise. Journal of Physiology, 2008, 586, 4327-4338.	2.9	74
31	Effect of acute hypoxia on blood flow in vertebral and internal carotid arteries. Experimental Physiology, 2013, 98, 692-698.	2.0	72
32	Influence of baroreflex-mediated tachycardia on the regulation of dynamic cerebral perfusion during acute hypotension in humans. Journal of Physiology, 2010, 588, 365-371.	2.9	71
33	Dynamic cerebral autoregulation and baroreflex sensitivity during modest and severe step changes in arterial PCO2. Brain Research, 2008, 1230, 115-124.	2.2	58
34	Skin blood flow influences cerebral oxygenation measured by near-infrared spectroscopy during dynamic exercise. European Journal of Applied Physiology, 2013, 113, 2841-2848.	2.5	57
35	Regulation of middle cerebral artery blood velocity during dynamic exercise in humans: influence of aging. Journal of Applied Physiology, 2008, 105, 266-273.	2.5	55
36	Repeated high-intensity interval exercise shortens the positive effect on executive function during post-exercise recovery in healthy young males. Physiology and Behavior, 2016, 160, 26-34.	2.1	55

3

#	Article	IF	CITATIONS
37	Exaggerated systemic oxidativeâ€inflammatoryâ€nitrosative stress in chronic mountain sickness is associated with cognitive decline and depression. Journal of Physiology, 2019, 597, 611-629.	2.9	55
38	A Decrease in Spatially Resolved Near-Infrared Spectroscopy-Determined Frontal Lobe Tissue Oxygenation by Phenylephrine Reflects Reduced Skin Blood Flow. Anesthesia and Analgesia, 2014, 118, 823-829.	2.2	53
39	Alterations in autonomic function and cerebral hemodynamics to orthostatic challenge following a mountain marathon. Journal of Applied Physiology, 2007, 103, 88-96.	2.5	52
40	Cerebral carbohydrate cost of physical exertion in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 287, R534-R540.	1.8	51
41	Onset responses of ventilation and cerebral blood flow to hypercapnia in humans: rest and exercise. Journal of Applied Physiology, 2009, 106, 880-886.	2.5	50
42	Inhibition of KATPchannel activity augments baroreflex-mediated vasoconstriction in exercising human skeletal muscle. Journal of Physiology, 2004, 561, 273-282.	2.9	49
43	Blood flow in internal carotid and vertebral arteries during graded lower body negative pressure in humans. Experimental Physiology, 2015, 100, 259-266.	2.0	49
44	Differential effects of acute hypoxia and high altitude on cerebral blood flow velocity and dynamic cerebral autoregulation: alterations with hyperoxia. Journal of Applied Physiology, 2008, 104, 490-498.	2.5	47
45	Carotid baroreflex control of leg vascular conductance at rest and during exercise. Journal of Applied Physiology, 2003, 94, 542-548.	2.5	46
46	Increases in central blood volume modulate carotid baroreflex resetting during dynamic exercise in humans. Journal of Physiology, 2007, 581, 405-418.	2.9	46
47	The effect of oxygen on dynamic cerebral autoregulation: critical role of hypocapnia. Journal of Applied Physiology, 2010, 108, 538-543.	2.5	44
48	Arterial baroreflex control of muscle sympathetic nerve activity in the transition from rest to steady-state dynamic exercise in humans. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H2202-H2209.	3.2	43
49	Carotid baroreflex control of leg vasculature in exercising and non-exercising skeletal muscle in humans. Journal of Physiology, 2004, 561, 283-293.	2.9	42
50	Influence of skin blood flow and sourceâ€detector distance on nearâ€infrared spectroscopyâ€determined cerebral oxygenation in humans. Clinical Physiology and Functional Imaging, 2015, 35, 237-244.	1.2	42
51	Dynamic blood pressure control and middle cerebral artery mean blood velocity variability at rest and during exercise in humans. Acta Physiologica, 2007, 191, 3-14.	3.8	41
52	Regulation of middle cerebral artery blood velocity during recovery from dynamic exercise in humans. Journal of Applied Physiology, 2007, 102, 713-721.	2.5	39
53	Effect of Exercise on Brain Health: The Potential Role of Lactate as a Myokine. Metabolites, 2021, 11, 813.	2.9	39
54	Experimental Physiology – <i>Research Paper</i> : Glycopyrrolate abolishes the exerciseâ€induced increase in cerebral perfusion in humans. Experimental Physiology, 2010, 95, 1016-1025.	2.0	36

#	Article	IF	CITATIONS
55	Spontaneous baroreflex measures are unable to detect ageâ€related impairments in cardiac baroreflex function during dynamic exercise in humans. Experimental Physiology, 2009, 94, 447-458.	2.0	35
56	Extraâ€cerebral oxygenation influence on nearâ€infraredâ€spectroscopyâ€determined frontal lobe oxygenation in healthy volunteers: a comparison between <scp>INVOS</scp> â€4100 and <scp>NIRO</scp> â€200 <scp>NX</scp> . Clinical Physiology and Functional Imaging, 2015, 35, 177-184.	1.2	35
57	Regional redistribution of blood flow in the external and internal carotid arteries during acute hypotension. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 306, R747-R751.	1.8	34
58	External carotid artery flow maintains near infrared spectroscopy-determined frontal lobe oxygenation during ephedrine administration. British Journal of Anaesthesia, 2014, 113, 452-458.	3.4	34
59	Sex differences in baroreflex function in health and disease. Journal of Physiological Sciences, 2019, 69, 851-859.	2.1	34
60	Dynamic cerebral autoregulation during and after handgrip exercise in humans. Journal of Applied Physiology, 2010, 108, 1701-1705.	2.5	33
61	Cerebral blood flow regulation and cognitive function: a role of arterial baroreflex function. Journal of Physiological Sciences, 2019, 69, 813-823.	2.1	33
62	Autonomic Control of Cerebral Circulation. Medicine and Science in Sports and Exercise, 2008, 40, 2046-2054.	0.4	32
63	Cerebral hypoperfusion during hypoxic exercise following two different hypoxic exposures: independence from changes in dynamic autoregulation and reactivity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R1613-R1622.	1.8	31
64	Enhanced open-loop but not closed-loop cardiac baroreflex sensitivity during orthostatic stress in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R1591-R1598.	1.8	31
65	Acute Effect of Static Stretching Exercise on Arterial Stiffness in Healthy Young Adults. American Journal of Physical Medicine and Rehabilitation, 2016, 95, 764-770.	1.4	31
66	Interaction between the respiratory system and cerebral blood flow regulation. Journal of Applied Physiology, 2019, 127, 1197-1205.	2.5	31
67	Influence of ageing on carotid baroreflex peak response latency in humans. Journal of Physiology, 2009, 587, 5427-5439.	2.9	30
68	Enhanced muscle pump during mild dynamic leg exercise inhibits sympathetic vasomotor outflow. Physiological Reports, 2014, 2, e12070.	1.7	30
69	Effects of acute hypoxia on cerebrovascular responses to carbon dioxide. Experimental Physiology, 2014, 99, 849-858.	2.0	29
70	Cardiovascular Reflexes Activity and Their Interaction during Exercise. BioMed Research International, 2015, 2015, 1-10.	1.9	29
71	Exercise intensity influences cardiac baroreflex function at the onset of isometric exercise in humans. Journal of Applied Physiology, 2007, 103, 941-947.	2.5	28
72	Effect of an acute increase in central blood volume on cerebral hemodynamics. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R902-R911.	1.8	28

#	Article	IF	Citations
73	Effects of changes in central blood volume on carotid-vasomotor baroreflex sensitivity at rest and during exercise. Journal of Applied Physiology, 2006, 101, 68-75.	2.5	27
74	Transfer function characteristics of the neural and peripheral arterial baroreflex arcs at rest and during postexercise muscle ischemia in humans. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H1416-H1424.	3.2	27
75	Influence of single bout of aerobic exercise on aortic pulse pressure. European Journal of Applied Physiology, 2015, 115, 739-746.	2.5	27
76	Carotid baroreflex function ceases during vasovagal syncope. Clinical Autonomic Research, 2004, 14, 30-33.	2.5	26
77	Dynamic carotid baroreflex control of the peripheral circulation during exercise in humans. Journal of Physiology, 2004, 559, 675-684.	2.9	24
78	Carotid-Cardiac Baroreflex Function Does Not Influence Blood Pressure Regulation during Head-Up Tilt in Humans. Journal of Physiological Sciences, 2006, 56, 227-233.	2.1	24
79	Acute effect of stretching one leg on regional arterial stiffness in young men. European Journal of Applied Physiology, 2017, 117, 1227-1232.	2.5	24
80	Cardiopulmonary baroreflex is reset during dynamic exercise. Journal of Applied Physiology, 2006, 100, 51-59.	2.5	23
81	Influence of age on cardiac baroreflex function during dynamic exercise in humans. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H777-H783.	3.2	23
82	Cardiac and vasomotor components of the carotid baroreflex control of arterial blood pressure during isometric exercise in humans. Journal of Physiology, 2006, 572, 869-880.	2.9	22
83	Estimation of cerebral vascular tone during exercise; evaluation by critical closing pressure in humans. Experimental Physiology, 2010, 95, 678-685.	2.0	21
84	Hyperthermia modulates regional differences in cerebral blood flow to changes in CO2. Journal of Applied Physiology, 2014, 117, 46-52.	2.5	21
85	Heterogeneous Regulation of Brain Blood Flow during Low-Intensity Resistance Exercise. Medicine and Science in Sports and Exercise, 2016, 48, 1829-1834.	0.4	21
86	Effects of acute hypoxia on human cognitive processing: a study using ERPs and SEPs. Journal of Applied Physiology, 2017, 123, 1246-1255.	2.5	21
87	High-intensity muscle metaboreflex activation attenuates cardiopulmonary baroreflex-mediated inhibition of muscle sympathetic nerve activity. Journal of Applied Physiology, 2018, 125, 812-819.	2.5	21
88	Relationship between aerobic endurance training and dynamic cerebral blood flow regulation in humans. Scandinavian Journal of Medicine and Science in Sports, 2013, 23, e320-9.	2.9	20
89	Manipulation of central blood volume and implications for respiratory control function. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1669-H1678.	3.2	20
90	Dynamic cerebral autoregulation in anterior and posterior cerebral circulation during cold pressor test. Journal of Physiological Sciences, 2020, 70, 1.	2.1	20

#	Article	IF	CITATIONS
91	Effects of hyperglycemia on the cerebrovascular response to rhythmic handgrip exercise. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H467-H473.	3.2	19
92	Impact of short-term training camp on arterial stiffness in endurance runners. Journal of Physiological Sciences, 2015, 65, 445-449.	2.1	19
93	Near-infrared spectroscopy determined cerebral oxygenation with eliminated skin blood flow in young males. Journal of Clinical Monitoring and Computing, 2016, 30, 243-250.	1.6	19
94	Effect of increases in cardiac contractility on cerebral blood flow in humans. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H1155-H1161.	3.2	19
95	Does Pulsatile and Sustained Neck Pressure or Neck Suction Produce Differential Cardiovascular and Sympathetic Responses in Humans?. Experimental Physiology, 2003, 88, 595-601.	2.0	18
96	Transcranial Doppler-determined change in posterior cerebral artery blood flow velocity does not reflect vertebral artery blood flow during exercise. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H827-H831.	3.2	18
97	Impact of age on critical closing pressure of the cerebral circulation during dynamic exercise in humans. Experimental Physiology, 2011, 96, 417-425.	2.0	17
98	Systemic oxidative–nitrosative–inflammatory stress during acute exercise in hypoxia; implications for microvascular oxygenation and aerobic capacity. Experimental Physiology, 2014, 99, 1648-1662.	2.0	17
99	Differential effect of sympathetic activation on tissue oxygenation in gastrocnemius and soleus muscles during exercise in humans. Experimental Physiology, 2014, 99, 348-358.	2.0	17
100	Arterial and venous cerebral blood flow responses to longâ€term headâ€down bed rest in male volunteers. Experimental Physiology, 2020, 105, 44-52.	2.0	17
101	Serial evaluation of fatty acid metabolism in rats with myocardial infarction by pinhole SPECT. Journal of Nuclear Cardiology, 2001, 8, 472-481.	2.1	16
102	The effects of aerobic fitness and \hat{l}^21 -adrenergic receptor blockade on cardiac work during dynamic exercise. Journal of Applied Physiology, 2009, 106, 486-493.	2.5	16
103	Impact of chronic exercise training on the blood pressure response to orthostatic stimulation. Journal of Applied Physiology, 2012, 112, 1891-1896.	2.5	16
104	Cerebral hypoperfusion modifies the respiratory chemoreflex during orthostatic stress. Clinical Science, 2013, 125, 37-44.	4.3	15
105	Hypoxia attenuates cardiopulmonary reflex control of sympathetic nerve activity during mild dynamic leg exercise. Experimental Physiology, 2016, 101, 377-386.	2.0	15
106	Carotid baroreflex function at the onset of cycling in men. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R870-R878.	1.8	15
107	Acute effect of coffee drinking on dynamic cerebral autoregulation. European Journal of Applied Physiology, 2016, 116, 879-884.	2.5	15
108	Gravity, intracranial pressure, and cerebral autoregulation. Physiological Reports, 2019, 7, e14039.	1.7	15

#	Article	IF	CITATIONS
109	Dynamic Cerebral Autoregulation Is Maintained during High-Intensity Interval Exercise. Medicine and Science in Sports and Exercise, 2019, 51, 372-378.	0.4	15
110	Habitual cigarette smoking attenuates shearâ€mediated dilation in the brachial artery but not in the carotid artery in young adults. Physiological Reports, 2020, 8, e14369.	1.7	15
111	Face cooling with mist water increases cerebral blood flow during exercise: effect of changes in facial skin blood flow. Frontiers in Physiology, 2012, 3, 308.	2.8	14
112	Acute vascular effects of carbonated warm water lower leg immersion in healthy young adults. Physiological Reports, 2016, 4, e13046.	1.7	14
113	Dynamic cerebral autoregulation is unrelated to decrease in external carotid artery blood flow during acute hypotension in healthy young men. Experimental Physiology, 2016, 101, 1040-1049.	2.0	14
114	Coupling between arterial and venous cerebral blood flow during postural change. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R1255-R1261.	1.8	14
115	Kinetics of exerciseâ€induced neural activation; interpretive dilemma of altered cerebral perfusion. Experimental Physiology, 2012, 97, 219-227.	2.0	13
116	Internal carotid, external carotid and vertebral artery blood flow responses to 3 days of headâ€out dry immersion. Experimental Physiology, 2017, 102, 1278-1287.	2.0	13
117	Regulation of regional cerebral blood flow during graded reflex-mediated sympathetic activation via lower body negative pressure. Journal of Applied Physiology, 2018, 125, 1779-1786.	2.5	13
118	Muscle pump-induced inhibition of sympathetic vasomotor outflow during low-intensity leg cycling is attenuated by muscle metaboreflex activation. Journal of Applied Physiology, 2020, 128, 1-7.	2.5	13
119	Cerebral hypoperfusion modifies the respiratory chemoreflex during orthostatic stress. Clinical Science, 2013, 125, 37-44.	4.3	12
120	Heat stress redistributes blood flow in arteries of the brain during dynamic exercise. Journal of Applied Physiology, 2016, 120, 766-773.	2.5	12
121	Interaction between graviception and carotid baroreflex function in humans during parabolic flight-induced microgravity. Journal of Applied Physiology, 2018, 125, 634-641.	2.5	12
122	Does respiratory drive modify the cerebral vascular response to changes in endâ€tidal carbon dioxide?. Experimental Physiology, 2019, 104, 1363-1370.	2.0	12
123	Brain blood and cerebrospinal fluid flow dynamics during rhythmic handgrip exercise in young healthy men and women. Journal of Physiology, 2021, 599, 1799-1813.	2.9	12
124	Cerebral blood flow regulation during hypoxia. Experimental Physiology, 2015, 100, 109-110.	2.0	11
125	Impact of mild orthostatic stress on aortic-cerebral hemodynamic transmission: insight from the frequency domain. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H1076-H1084.	3.2	11
126	Acute impact of drinking coffee on the cerebral and systemic vasculature. Physiological Reports, 2017, 5, e13288.	1.7	11

#	Article	IF	Citations
127	Acute effect of passive one-legged intermittent static stretching on regional blood flow in young men. European Journal of Applied Physiology, 2021, 121, 331-337.	2.5	11
128	Dynamic cerebral autoregulation during cognitive task: effect of hypoxia. Journal of Applied Physiology, 2018, 124, 1413-1419.	2.5	10
129	Effects of acute interval handgrip exercise on cognitive performance. Physiology and Behavior, 2021, 232, 113327.	2.1	10
130	Relationship between Aortic Compliance and Impact of Cerebral Blood Flow Fluctuation to Dynamic Orthostatic Challenge in Endurance Athletes. Frontiers in Physiology, 2018, 9, 25.	2.8	9
131	Gravitational Transitions Increase Posterior Cerebral Perfusion and Systemic Oxidative-nitrosative Stress: Implications for Neurovascular Unit Integrity. Neuroscience, 2020, 441, 142-160.	2.3	9
132	Greater increase in internal carotid artery shear rate during aerobic interval compared to continuous exercise in healthy adult men. Physiological Reports, 2021, 9, e14705.	1.7	9
133	Gravitational effects on intracranial pressure and blood flow regulation in young men: a potential shunting role for the external carotid artery. Journal of Applied Physiology, 2020, 129, 901-908.	2.5	8
134	Effect of systemic $\hat{l}\pm 1$ -adrenergic receptor blockade on central blood pressure response during exercise. Journal of Physiological Sciences, 2013, 63, 389-393.	2.1	7
135	Acute reduction in posterior cerebral blood flow following isometric handgrip exercise is augmented by lower body negative pressure. Physiological Reports, 2018, 6, e13886.	1.7	7
136	Effect of leg immersion in mild warm carbonated water on skin and muscle blood flow. Physiological Reports, 2018, 6, e13859.	1.7	7
137	Long-term Exercise Confers Equivalent Neuroprotection in Females Despite Lower Cardiorespiratory Fitness. Neuroscience, 2020, 427, 58-63.	2.3	7
138	Relationship between cerebral arterial inflow and venous outflow during dynamic supine exercise. Physiological Reports, 2017, 5, e13292.	1.7	6
139	The effect of muscle metaboreflex on the distribution of blood flow in cerebral arteries during isometric exercise. Journal of Physiological Sciences, 2019, 69, 375-385.	2.1	6
140	Influence of regular exercise training on post-exercise hemodynamic regulation to orthostatic challenge. Frontiers in Physiology, 2014, 5, 229.	2.8	5
141	The effect of an acute increase in central blood volume on the response of cerebral blood flow to acute hypotension. Journal of Applied Physiology, 2015, 119, 527-533.	2.5	5
142	Anatomical vertebral artery hypoplasia and insufficiency impairs dynamic blood flow regulation. Clinical Physiology and Functional Imaging, 2015, 35, 485-489.	1.2	5
143	Ultrasound tagged near infrared spectroscopy does not detect hyperventilation-induced reduction in cerebral blood flow. Scandinavian Journal of Clinical and Laboratory Investigation, 2016, 76, 82-87.	1.2	5
144	Acute hypotension attenuates brachial flow-mediated dilation in young healthy men. European Journal of Applied Physiology, 2020, 120, 161-169.	2.5	5

#	Article	IF	CITATIONS
145	Differential impact of shear rate in the cerebral and systemic circulation: implications for endothelial function. Journal of Applied Physiology, 2021, 130, 1152-1154.	2.5	5
146	Effect of intermittent isometric handgrip exercise protocol with short exercise duration on cognitive performance. Journal of Physiological Sciences, 2021, 71, 12.	2.1	5
147	Sympathetic vasomotor outflow during lowâ€intensity leg cycling in healthy older males. Experimental Physiology, 2022, 107, 825-833.	2.0	5
148	Heterogeneous regulation of cerebral blood flow in hypoxia; implications for dynamic cerebral autoregulation and susceptibility to acute mountain sickness. Experimental Physiology, 2017, 102, 383-383.	2.0	4
149	Cerebral blood flow regulation and cognitive function in women with posttraumatic stress disorder. Journal of Applied Physiology, 2018, 125, 1627-1635.	2.5	4
150	Cerebrovascular carbon dioxide reactivity and flow-mediated dilation in young healthy South Asian and Caucasian European men. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H756-H763.	3.2	4
151	Plasma brain-derived neurotrophic factor and dynamic cerebral autoregulation in acute response to glycemic control following breakfast in young men. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R69-R79.	1.8	4
152	Integrated respiratory chemoreflexâ€mediated regulation of cerebral blood flow in hypoxia: Implications for oxygen delivery and acute mountain sickness. Experimental Physiology, 2021, 106, 1922-1938.	2.0	4
153	Validity of transcranial Doppler ultrasonography-determined dynamic cerebral autoregulation estimated using transfer function analysis. Journal of Clinical Monitoring and Computing, 2022, , .	1.6	4
154	Effects of transient change in carotid arterial stiffness on arterial baroreflex during mild orthostatic stimulation. Artery Research, 2012, 6, 130.	0.6	3
155	Thermodilution-determined Internal Jugular Venous Flow. Medicine and Science in Sports and Exercise, 2017, 49, 661-668.	0.4	3
156	Dynamic characteristics of cerebrovascular reactivity or ventilatory response to change in carbon dioxide. Experimental Physiology, 2020, 105, 1515-1523.	2.0	3
157	An assessment of hypercapnia-induced elevations in regional cerebral perfusion during combined orthostatic and heat stresses. Journal of Physiological Sciences, 2020, 70, 25.	2.1	3
158	Acute effects of the different relaxation periods during passive intermittent static stretching on arterial stiffness. PLoS ONE, 2021, 16, e0259444.	2.5	3
159	Site-specific different dynamic cerebral autoregulation and cerebrovascular response to carbon dioxide in posterior cerebral circulation during isometric exercise in healthy young men. Autonomic Neuroscience: Basic and Clinical, 2022, 238, 102943.	2.8	3
160	Influence of headâ€up tile and lower body negative pressure on the internal jugular vein. Physiological Reports, 2022, 10, e15248.	1.7	3
161	Impact of Short-Term Training Camp on Aortic Blood Pressure in Collegiate Endurance Runners. Frontiers in Physiology, 2018, 9, 290.	2.8	2
162	Last Word on Viewpoint: Differential impact of shear rate in the cerebral and systemic circulation: implications for endothelial function. Journal of Applied Physiology, 2021, 130, 1161-1162.	2.5	2

#	Article	IF	CITATIONS
163	Effect of jump exercise training on longâ€term headâ€down bed restâ€induced cerebral blood flow responses in arteries and veins. Experimental Physiology, 2021, 106, 1549-1558.	2.0	2
164	Is individual day-to-day variation of arterial stiffness associated with variation of maximal aerobic performance?. BMC Sports Science, Medicine and Rehabilitation, 2021, 13, 4.	1.7	2
165	Cognitive Function and Dynamic Cerebral Blood Flow Regulation in Multiple Concussions. Asian Journal of Sports Medicine, 2018, 9, .	0.3	2
166	Cerebral blood velocity and arterial pressure at the onset of exercise: potential influence of the cardiopulmonary baroreflex. Clinical Autonomic Research, 2022, , 1.	2.5	2
167	Influence of cardiac output response to the onset of exercise on cerebral blood flow. European Journal of Applied Physiology, 2022, 122, 1939-1948.	2.5	2
168	Why do African Americans have a higher risk for cerebral disease?. Experimental Physiology, 2018, 103, 310-311.	2.0	1
169	Effects of Mild Orthostatic Stimulation on Cerebral Pulsatile Hemodynamics. Frontiers in Physiology, 2019, 10, 230.	2.8	1
170	Fluctuating shear during resistance exercise. Experimental Physiology, 2020, 105, 2004-2006.	2.0	1
171	Effect of breath-hold on the responses of arterial blood pressure and cerebral blood velocity to isometric exercise. European Journal of Applied Physiology, 2022, 122, 157-168.	2.5	1
172	Acute Gravitational Stress Selectively Impairs Dynamic Cerebrovascular Reactivity in the Anterior Circulation Independent of Changes to the Central Respiratory Chemoreflex. Frontiers in Physiology, 2021, 12, 749255.	2.8	1
173	Response to Letter by Prakash. Stroke, 2008, 39, .	2.0	0
174	What is important for aging-induced arterial stiffening, autonomic dysfunction, vascular characteristics or both?. Hypertension Research, 2017, 40, 434-435.	2.7	0
175	Chronic obstructive pulmonary diseaseâ€induced autonomic dysfunction may be associated with cerebral blood flow regulation and brain function. Experimental Physiology, 2018, 103, 1045-1046.	2.0	0
176	Does Exercise Improve False Episodic Memory in Dementia?. Journal of Clinical Medicine, 2019, 8, 1829.	2.4	0
177	The influence of cardiac output variability on cerebral blood fiow velocity variability during exercise in humans. Japanese Journal of Physical Fitness and Sports Medicine, 2006, 55, 21-21.	0.0	0
178	Cardiac and vasomotor components of the carotid baroreflex control of arterial blood pressure during isometric exercise in humans. FASEB Journal, 2006, 20, .	0.5	0
179	The effects of changes in central blood volume on carotid baroreflex sensitivity at rest and during exercise. FASEB Journal, 2006, 20, A767.	0.5	0
180	Effect of Angiotensin II on the peripheral vasculature during rest low, mild, and heavy exercise workloads. FASEB Journal, 2007, 21, A1372.	0.5	0

#	Article	IF	CITATIONS
181	Influence of exercise intensity on carotid ardiac responses at the onset of static exercise in humans. FASEB Journal, 2007, 21, A574.	0.5	0
182	Arterial baroreflex control of muscle sympathetic nerve activity during dynamic exercise in humans. FASEB Journal, 2007, 21, A573.	0.5	0
183	Dynamic pressureâ€flow relationships in the human cerebral circulation at rest with and without alpha1â€adrenoreceptor blockade. FASEB Journal, 2008, 22, 1151.18.	0.5	0
184	Cerebral blood flow reactivity to CO 2 during exercise. FASEB Journal, 2008, 22, 737.40.	0.5	0
185	Ageâ€related alterations in the critical closing pressure of the cerebral circulation from rest to exercise in healthy humans. FASEB Journal, 2009, 23, 613.15.	0.5	0
186	Arterial baroreflex regulation of cerebral blood flow in humans. The Journal of Physical Fitness and Sports Medicine, 2012, 1, 631-636.	0.3	0
187	The effect of an acute increase in central blood volume on hypercapniaâ€induced attenuation in dynamic cerebral autoregulation. FASEB Journal, 2015, 29, 645.6.	0.5	0
188	Cardiac Mechanoreceptor Activation in Humans: Evaluation by Phenylephrine and Norepinephrine. FASEB Journal, 2015, 29, 643.3.	0.5	0
189	Impact of Mild Orthostatic Stress on Aortic erebral Pulsatile Flow Transmission: Insight from the Frequency Domain. FASEB Journal, 2015, 29, 833.2.	0.5	0
190	High Intensity Muscle Metaboreflex Activation Blunts Cardiopulmonary Baroreflex Control of Sympathetic Vasomotor Outflow. FASEB Journal, 2018, 32, 884.3.	0.5	0