
Andrea Genre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/14219/publications.pdf Version: 2024-02-01

ANDREA CENDE

#	Article	IF	CITATIONS
1	Extraction of short chain chitooligosaccharides from fungal biomass and their use as promoters of arbuscular mycorrhizal symbiosis. Scientific Reports, 2021, 11, 3798.	3.3	11
2	Divide and Be Conquered—Cell Cycle Reactivation in Arbuscular Mycorrhizal Symbiosis. Frontiers in Plant Science, 2021, 12, 753265.	3.6	7
3	Short chain chito-oligosaccharides promote arbuscular mycorrhizal colonization in Medicago truncatula. Carbohydrate Polymers, 2020, 229, 115505.	10.2	22
4	Unique and common traits in mycorrhizal symbioses. Nature Reviews Microbiology, 2020, 18, 649-660.	28.6	277
5	Editorial: Proceedings of iMMM 2019 – International Molecular Mycorrhiza Meeting. Frontiers in Plant Science, 2020, 11, 627988.	3.6	0
6	An endophytic <i>Fusarium</i> –legume association is partially dependent on the common symbiotic signalling pathway. New Phytologist, 2020, 226, 1429-1444.	7.3	23
7	A Rice Receptor for Mycorrhizal Fungal Signals Opens New Opportunities for the Development of Sustainable Agricultural Practices. Molecular Plant, 2020, 13, 181-183.	8.3	1
8	Fluorescent Staining of Arbuscular Mycorrhizal Structures Using Wheat Germ Agglutinin (WGA) and Propidium Iodide. Methods in Molecular Biology, 2020, 2146, 53-59.	0.9	0
9	7 Genetics and Genomics Decipher Partner Biology in Arbuscular Mycorrhizas. , 2020, , 143-172.		0
10	Size matters: three methods for estimating nuclear size in mycorrhizal roots of Medicago truncatula by image analysis. BMC Plant Biology, 2019, 19, 180.	3.6	11
11	Colonization of legumes by an endophytic Fusarium solani strain FsK reveals common features to symbionts or pathogens. Fungal Genetics and Biology, 2019, 127, 60-74.	2.1	24
12	Local endoreduplication as a feature of intracellular fungal accommodation in arbuscular mycorrhizas. New Phytologist, 2019, 223, 430-446.	7.3	25
13	TPLATE Recruitment Reveals Endocytic Dynamics at Sites of Symbiotic Interface Assembly in Arbuscular Mycorrhizal Interactions. Frontiers in Plant Science, 2019, 10, 1628.	3.6	11
14	Ectopic activation of cortical cell division during the accommodation of arbuscular mycorrhizal fungi. New Phytologist, 2019, 221, 1036-1048.	7.3	38
15	The symbiotic role of the actin filament cytoskeleton. New Phytologist, 2019, 221, 611-613.	7.3	4
16	Pre-harvest berry shrinkage in cv â€~Shiraz' (Vitis vinifera L.): Understanding sap flow by means of tracing. Scientia Horticulturae, 2018, 233, 394-406.	3.6	11
17	Cell remodeling and subtilase gene expression in the actinorhizal plant <i>Discaria trinervis</i> highlight host orchestration of intercellular <i>Frankia</i> colonization. New Phytologist, 2018, 219, 1018-1030.	7.3	29
18	Epidermal LysM receptor ensures robust symbiotic signalling in Lotus japonicus. ELife, 2018, 7, .	6.0	51

Andrea Genre

#	Article	IF	CITATIONS
19	New substituted imidazo[1,5-a]pyridine and imidazo[5,1-a]isoquinoline derivatives and their application in fluorescence cell imaging. Dyes and Pigments, 2018, 157, 298-304.	3.7	31
20	The rice LysM receptorâ€like kinase <i>Os</i> <scp>CERK</scp> 1 is required for the perception of shortâ€chain chitin oligomers in arbuscular mycorrhizal signaling. New Phytologist, 2017, 214, 1440-1446.	7.3	111
21	Nuclear Ca ²⁺ signalling in arbuscular mycorrhizal and actinorhizal endosymbioses: on the trail of novel underground signals. New Phytologist, 2017, 214, 533-538.	7.3	21
22	Viability and germinability in long term storage of Corylus avellana pollen. Scientia Horticulturae, 2017, 214, 295-303.	3.6	33
23	Does a Common Pathway Transduce Symbiotic Signals in Plant–Microbe Interactions?. Frontiers in Plant Science, 2016, 7, 96.	3.6	116
24	Genome-Wide Identification of BAHD Acyltransferases and In vivo Characterization of HQT-like Enzymes Involved in Caffeoylquinic Acid Synthesis in Globe Artichoke. Frontiers in Plant Science, 2016, 7, 1424.	3.6	39
25	Endophytic coming out: the expressorium as a novel fungal structure specialized in outwardâ€directed penetration of the leaf cuticle. New Phytologist, 2016, 211, 5-7.	7.3	5
26	The Mutualistic Interaction between Plants and Arbuscular Mycorrhizal Fungi. Microbiology Spectrum, 2016, 4, .	3.0	47
27	NADPH oxidases in the arbuscular mycorrhizal symbiosis. Plant Signaling and Behavior, 2016, 11, e1165379.	2.4	9
28	The Medicago truncatula MtRbohE gene is activated in arbusculated cells and is involved in root cortex colonization. Planta, 2016, 243, 251-262.	3.2	28
29	The Importance of the KR-Rich Region of the Coat Protein of Ourmia melon virus for Host Specificity, Tissue Tropism, and Interference With Antiviral Defense. Molecular Plant-Microbe Interactions, 2015, 28, 30-41.	2.6	14
30	Remodeling of the Infection Chamber before Infection Thread Formation Reveals a Two-Step Mechanism for Rhizobial Entry into the Host Legume Root Hair. Plant Physiology, 2015, 167, 1233-1242.	4.8	127
31	Gate crashing arbuscular mycorrhizas: <i>in vivo</i> imaging shows the extensive colonization of both symbionts by <scp><i>T</i></scp> <i>richoderma atroviride</i> . Environmental Microbiology Reports, 2015, 7, 64-77.	2.4	41
32	Arbuscular mycorrhizal dialogues: do you speak â€~plantish' or â€~fungish'?. Trends in Plant Science, 2015 20, 150-154.	5, 8.8	117
33	Accumulation of cynaropicrin in globe artichoke and localization of enzymes involved in its biosynthesis. Plant Science, 2015, 239, 128-136.	3.6	36
34	Evaluation of the bioactive properties of avenanthramide analogs produced in recombinant yeast. BioFactors, 2015, 41, 15-27.	5.4	36
35	A role for the mevalonate pathway in early plant symbiotic signaling. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9781-9786.	7.1	111
36	Genetic dissection of a putative nucleolar localization signal in the coat protein of ourmia melon virus. Archives of Virology, 2014, 159, 1187-1192.	2.1	11

Andrea Genre

#	Article	IF	CITATIONS
37	NO homeostasis is a key regulator of early nitrate perception and root elongation in maize*. Journal of Experimental Botany, 2014, 65, 185-200.	4.8	84
38	<i>Mollicutes</i> â€related endobacteria thrive inside liverwortâ€associated arbuscular mycorrhizal fungi. Environmental Microbiology, 2013, 15, 822-836.	3.8	25
39	Automated analysis of calcium spiking profiles with CaSA software: two case studies from root-microbe symbioses. BMC Plant Biology, 2013, 13, 224.	3.6	16
40	An <scp>AM</scp> â€induced, <i><scp>MYB</scp></i> â€family gene of <i>Lotus japonicus</i> (<i>Lj<scp>MAMI</scp></i>) affects root growth in an <scp>AM</scp> â€independent manner. Plant Journal, 2013, 73, 442-455.	5.7	46
41	Hydrogen peroxideâ€regulated genes in the <i>Medicago truncatula</i> – <i>Sinorhizobium meliloti</i> symbiosis. New Phytologist, 2013, 198, 179-189.	7.3	118
42	Arbuscular mycorrhizal fungi reduce growth and infect roots of the nonâ€host plant <i><scp>A</scp>rabidopsis thaliana</i> . Plant, Cell and Environment, 2013, 36, 1926-1937.	5.7	97
43	Shortâ€chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear <scp>C</scp> a ²⁺ spiking in <i><scp>M</scp>edicago truncatula</i> roots and their production is enhanced by strigolactone. New Phytologist, 2013, 198, 190-202.	7.3	453
44	Multiple Exocytotic Markers Accumulate at the Sites of Perifungal Membrane Biogenesis in Arbuscular Mycorrhizas. Plant and Cell Physiology, 2012, 53, 244-255.	3.1	107
45	<i>Rhizobium</i> –legume symbiosis shares an exocytotic pathway required for arbuscule formation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8316-8321.	7.1	213
46	The exudate from an arbuscular mycorrhizal fungus induces nitric oxide accumulation in Medicago truncatula roots. Mycorrhiza, 2012, 22, 259-269.	2.8	62
47	Signalling and the Re-structuring of Plant Cell Architecture in AM Symbiosis. Signaling and Communication in Plants, 2012, , 51-71.	0.7	4
48	Arbuscular mycorrhizal hyphopodia and germinated spore exudates trigger Ca ²⁺ spiking in the legume and nonlegume root epidermis. New Phytologist, 2011, 189, 347-355.	7.3	165
49	Analysis of Calcium Spiking in Plant Root Epidermis through CWC Modeling. Electronic Notes in Theoretical Computer Science, 2011, 277, 65-76.	0.9	5
50	Reverse Genetic Analysis of Ourmiaviruses Reveals the Nucleolar Localization of the Coat Protein in Nicotiana benthamiana and Unusual Requirements for Virion Formation. Journal of Virology, 2011, 85, 5091-5104.	3.4	39
51	The Major Antigenic Membrane Protein of "Candidatus Phytoplasma asteris―Selectively Interacts with ATP Synthase and Actin of Leafhopper Vectors. PLoS ONE, 2011, 6, e22571.	2.5	88
52	Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nature Communications, 2010, 1, 48.	12.8	990
53	The Making of Symbiotic Cells in Arbuscular Mycorrhizal Roots. , 2010, , 57-71.		24
54	Biotic and Abiotic Stimulation of Root Epidermal Cells Reveals Common and Specific Responses to Arbuscular Mycorrhizal Fungi Â. Plant Physiology, 2009, 149, 1424-1434.	4.8	78

ANDREA GENRE

#	Article	IF	CITATIONS
55	Establishment and Functioning of Arbuscular Mycorrhizas. , 2009, , 259-274.		6
56	Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. Trends in Plant Science, 2008, 13, 492-498.	8.8	287
57	Confocal microscopy and plant cell biology: A perfect match. Plant Biosystems, 2008, 142, 348-354.	1.6	О
58	Prepenetration Apparatus Assembly Precedes and Predicts the Colonization Patterns of Arbuscular Mycorrhizal Fungi within the Root Cortex of Both <i>Medicago truncatula</i> and <i>Daucus carota</i> Â. Plant Cell, 2008, 20, 1407-1420.	6.6	283
59	Pre-Penetration Apparatus Formation During AM Infection is Associated With a Specific Transcriptome Response in Epidermal Cells. Plant Signaling and Behavior, 2007, 2, 533-535.	2.4	11
60	A Diffusible Signal from Arbuscular Mycorrhizal Fungi Elicits a Transient Cytosolic Calcium Elevation in Host Plant Cells. Plant Physiology, 2007, 144, 673-681.	4.8	164
61	Transcriptome Analysis of Arbuscular Mycorrhizal Roots during Development of the Prepenetration Apparatus. Plant Physiology, 2007, 144, 1455-1466.	4.8	117
62	Check-In Procedures for Plant Cell Entry by Biotrophic Microbes. Molecular Plant-Microbe Interactions, 2007, 20, 1023-1030.	2.6	30
63	Plants and Arbuscular Mycorrhizal Fungi: Cues and Communication in the Early Steps of Symbiotic Interactions. Advances in Botanical Research, 2007, , 181-219.	1.1	36
64	The arbuscular mycorrhizal fungus <i>Glomus intraradices</i> induces intracellular calcium changes in soybean cells. Caryologia, 2007, 60, 137-140.	0.3	7
65	Building a mycorrhizal cell: How to reach compatibility between plants and arbuscular mycorrhizal fungi. Journal of Plant Interactions, 2005, 1, 3-13.	2.1	51
66	Arbuscular Mycorrhizal Fungi Elicit a Novel Intracellular Apparatus in Medicago truncatula Root Epidermal Cells before Infection[W]. Plant Cell, 2005, 17, 3489-3499.	6.6	441
67	Vertical Transmission of Endobacteria in the Arbuscular Mycorrhizal Fungus Gigaspora margarita through Generation of Vegetative Spores. Applied and Environmental Microbiology, 2004, 70, 3600-3608.	3.1	126
68	Epidermal cells of a symbiosis-defective mutant of Lotus japonicus show altered cytoskeleton organisation in the presence of a mycorrhizal fungus. Protoplasma, 2002, 219, 43-50.	2.1	48
69	Dual requirement of the LjSym4 gene for mycorrhizal development in epidermal and cortical cells of Lotus japonicus roots. New Phytologist, 2002, 154, 741-749.	7.3	78
70	The Lotus japonicus LjSym4 Gene Is Required for the Successful Symbiotic Infection of Root Epidermal Cells. Molecular Plant-Microbe Interactions, 2000, 13, 1109-1120.	2.6	135
71	Actin versus tubulin configuration in arbusculeâ€containing cells from mycorrhizal tobacco roots. New Phytologist, 1998, 140, 745-752.	7.3	102
72	The Mutualistic Interaction between Plants and Arbuscular Mycorrhizal Fungi. , 0, , 727-747.		6

The Mutualistic Interaction between Plants and Arbuscular Mycorrhizal Fungi. , 0, , 727-747. 72