
Meredith A Morgan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1420667/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Radiotherapy and Immunotherapy Promote Tumoral Lipid Oxidation and Ferroptosis via Synergistic Repression of SLC7A11. Cancer Discovery, 2019, 9, 1673-1685.	9.4	566
2	Mechanism of Radiosensitization by the Chk1/2 Inhibitor AZD7762 Involves Abrogation of the G2 Checkpoint and Inhibition of Homologous Recombinational DNA Repair. Cancer Research, 2010, 70, 4972-4981.	0.9	267
3	Molecular Pathways: Overcoming Radiation Resistance by Targeting DNA Damage Response Pathways. Clinical Cancer Research, 2015, 21, 2898-2904.	7.0	176
4	Inhibition of ATM Increases Interferon Signaling and Sensitizes Pancreatic Cancer to Immune Checkpoint Blockade Therapy. Cancer Research, 2019, 79, 3940-3951.	0.9	154
5	Combined Inhibition of Wee1 and PARP1/2 for Radiosensitization in Pancreatic Cancer. Clinical Cancer Research, 2014, 20, 5085-5096.	7.0	128
6	Tumour-reprogrammed stromal BCAT1 fuels branched-chain ketoacid dependency in stromal-rich PDAC tumours. Nature Metabolism, 2020, 2, 775-792.	11.9	110
7	PARP1 Trapping and DNA Replication Stress Enhance Radiosensitization with Combined WEE1 and PARP Inhibitors. Molecular Cancer Research, 2018, 16, 222-232.	3.4	108
8	Role of Checkpoint Kinase 1 in Preventing Premature Mitosis in Response to Gemcitabine. Cancer Research, 2005, 65, 6835-6842.	0.9	101
9	Improving the Efficacy of Chemoradiation with Targeted Agents. Cancer Discovery, 2014, 4, 280-291.	9.4	75
10	Sensitization of Pancreatic Cancers to Gemcitabine Chemoradiation by WEE1 Kinase Inhibition Depends on Homologous Recombination Repair. Neoplasia, 2015, 17, 757-766.	5.3	64
11	The Relationship of Premature Mitosis to Cytotoxicity in Response to Checkpoint Abrogation and Antimetabolite Treatment. Cell Cycle, 2006, 5, 1983-1988.	2.6	46
12	Fbxw7 Deletion Accelerates KrasG12D-Driven Pancreatic Tumorigenesis via Yap Accumulation. Neoplasia, 2016, 18, 666-673.	5.3	33
13	ATRX loss in glioma results in dysregulation of cell-cycle phase transition and ATM inhibitor radio-sensitization. Cell Reports, 2022, 38, 110216.	6.4	32
14	The contribution of DNA replication stress marked by high-intensity, pan-nuclear γH2AX staining to chemosensitization by CHK1 and WEE1 inhibitors. Cell Cycle, 2018, 17, 1076-1086.	2.6	29
15	Expansion of Circulating Tumor Cells from Patients with Locally Advanced Pancreatic Cancer Enable Patient Derived Xenografts and Functional Studies for Personalized Medicine. Cancers, 2020, 12, 1011.	3.7	29
16	Targeting Mcl-1 for Radiosensitization of Pancreatic Cancers. Translational Oncology, 2015, 8, 47-54.	3.7	25
17	The WD40 domain of FBXW7 is a poly(ADP-ribose)-binding domain that mediates the early DNA damage response. Nucleic Acids Research, 2019, 47, 4039-4053.	14.5	25
18	Checkpoint kinase 1 protein expression indicates sensitization to therapy by checkpoint kinase 1 inhibition in non–small cell lung cancer. Journal of Surgical Research, 2014, 187, 6-13.	1.6	23

Meredith A Morgan

#	Article	IF	CITATIONS
19	Replication Stress: An Achilles' Heel of Glioma Cancer Stem–like Cells. Cancer Research, 2018, 78, 6713-6716.	0.9	22
20	Combinatorial Efficacy of Olaparib with Radiation and ATR Inhibitor Requires PARP1 Protein in Homologous Recombination–Proficient Pancreatic Cancer. Molecular Cancer Therapeutics, 2021, 20, 263-273.	4.1	22
21	Dissociation of gemcitabine chemosensitization by CHK1 inhibition from cell cycle checkpoint abrogation and aberrant mitotic entry. Cell Cycle, 2016, 15, 730-739.	2.6	16
22	Cytidine Deaminase APOBEC3A Regulates PD-L1 Expression in Cancer Cells in a JNK/c-JUN-Dependent Manner. Molecular Cancer Research, 2021, 19, 1571-1582.	3.4	8
23	Glycogen Synthase Kinase 3 Beta Predicts Survival in Resected Adenocarcinoma of the Pancreas. Clinical Cancer Research, 2015, 21, 5612-5618.	7.0	6
24	Glycogen Synthase Kinase 3β in Pancreatic Cancer and its Implications in Chemotherapy and Radiation Therapy. Journal of Carcinogenesis & Mutagenesis, 2013, 04, 147.	0.3	5
25	HGG-08. ATRX LOSS IN PEDIATRIC GBM RESULTS IN EPIGENETIC DYSREGULATION OF G2/M CHECKPOINT MAINTENANCE AND SENSITIVITY TO ATM INHIBITION. Neuro-Oncology, 2019, 21, ii88-ii88.	1.2	0
26	CBIO-03. ATRX LOSS IN GLIOMA RESULTS IN EPIGENETIC DYSREGULATION OF CELL CYCLE PHASE TRANSITION. Neuro-Oncology, 2020, 22, ii16-ii16.	1.2	0