List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1419917/publications.pdf Version: 2024-02-01

IFANSOR I KIM

#	Article	IF	CITATIONS
1	The stressed hippocampus, synaptic plasticity and lost memories. Nature Reviews Neuroscience, 2002, 3, 453-462.	10.2	1,243
2	PKCÎ ³ mutant mice exhibit mild deficits in spatial and contextual learning. Cell, 1993, 75, 1263-1271.	28.9	628
3	Effects of amygdala, hippocampus, and periaqueductal gray lesions on short- and long-term contextual fear Behavioral Neuroscience, 1993, 107, 1093-1098.	1.2	537
4	Neural circuits and mechanisms involved in Pavlovian fear conditioning: A critical review. Neuroscience and Biobehavioral Reviews, 2006, 30, 188-202.	6.1	494
5	Amygdala Is Critical for Stress-Induced Modulation of Hippocampal Long-Term Potentiation and Learning. Journal of Neuroscience, 2001, 21, 5222-5228.	3.6	479
6	Hippocampectomy impairs the memory of recently, but not remotely, acquired trace eyeblink conditioned responses Behavioral Neuroscience, 1995, 109, 195-203.	1.2	475
7	Importance of the Intracellular Domain of NR2 Subunits for NMDA Receptor Function In Vivo. Cell, 1998, 92, 279-289.	28.9	419
8	Deficient Cerebellar Long-Term Depression, Impaired Eyeblink Conditioning, and Normal Motor Coordination in GFAP Mutant Mice. Neuron, 1996, 16, 587-599.	8.1	415
9	Impaired motor coordination correlates with persistent multiple climbing fiber innervation in PKCÎ ³ mutant mice. Cell, 1995, 83, 1233-1242.	28.9	410
10	Behavioral stress modifies hippocampal plasticity through N-methyl-D-aspartate receptor activation Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 4750-4753.	7.1	399
11	Stress: metaplastic effects in the hippocampus. Trends in Neurosciences, 1998, 21, 505-509.	8.6	385
12	Stress effects on the hippocampus: a critical review. Learning and Memory, 2015, 22, 411-416.	1.3	379
13	Acquisition of contextual Pavlovian fear conditioning is blocked by application of an NMDA receptor antagonist D,L-2-amino-5-phosphonovaleric acid to the basolateral amygdala Behavioral Neuroscience, 1994, 108, 210-212.	1.2	374
14	Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning. Trends in Neurosciences, 1997, 20, 177-181.	8.6	334
15	N-methyl-D-aspartate receptor antagonist APV blocks acquisition but not expression of fear conditioning Behavioral Neuroscience, 1991, 105, 126-133.	1.2	301
16	Amygdalar NMDA Receptors are Critical for New Fear Learning in Previously Fear-Conditioned Rats. Journal of Neuroscience, 1998, 18, 8444-8454.	3.6	284
17	Mammalian Brain Substrates of Aversive Classical Conditioning. Annual Review of Psychology, 1993, 44, 317-342.	17.7	272
18	Memory systems in the brain and localization of a memory. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 13438-13444.	7.1	257

#	Article	IF	CITATIONS
19	Effects of Stress and Hippocampal NMDA Receptor Antagonism on Recognition Memory in Rats. Learning and Memory, 2002, 9, 58-65.	1.3	256
20	Inhibitory Cerebello-Olivary Projections and Blocking Effect in Classical Conditioning. Science, 1998, 279, 570-573.	12.6	254
21	Hippocampectomy impairs the memory of recently, but not remotely, acquired trace eyeblink conditioned responses Behavioral Neuroscience, 1995, 109, 195-203.	1.2	222
22	Stress effects in the hippocampus: Synaptic plasticity and memory. Stress, 2006, 9, 1-11.	1.8	217
23	Impaired classical eyeblink conditioning in cerebellar-lesioned and Purkinje cell degeneration (pcd) mutant mice. Journal of Neuroscience, 1996, 16, 2829-2838.	3.6	215
24	Prefrontal cortex and hippocampus subserve different components of working memory in rats. Learning and Memory, 2008, 15, 97-105.	1.3	194
25	Amygdalar NMDA Receptors Are Critical for the Expression of Multiple Conditioned Fear Responses. Journal of Neuroscience, 2001, 21, 4116-4124.	3.6	181
26	Social Transmission of Fear in Rats: The Role of 22-kHz Ultrasonic Distress Vocalization. PLoS ONE, 2010, 5, e15077.	2.5	173
27	Amygdalar Inactivation Blocks Stress-Induced Impairments in Hippocampal Long-Term Potentiation and Spatial Memory. Journal of Neuroscience, 2005, 25, 1532-1539.	3.6	165
28	Amygdala regulates risk of predation in rats foraging in a dynamic fear environment. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21773-21777.	7.1	158
29	Acquisition of contextual Pavlovian fear conditioning is blocked by application of an NMDA receptor antagonist D,L-2-amino-5-phosphonovaleric acid to the basolateral amygdala Behavioral Neuroscience, 1994, 108, 210-212.	1.2	155
30	Selective Neurotoxic Lesions of Basolateral and Central Nuclei of the Amygdala Produce Differential Effects on Fear Conditioning. Journal of Neuroscience, 2004, 24, 7654-7662.	3.6	153
31	Early life stress impairs fear conditioning in adult male and female rats. Brain Research, 2006, 1087, 142-150.	2.2	151
32	Selective enhancement of emotional, but not motor, learning in monoamine oxidase A-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 5929-5933.	7.1	146
33	Chronic stress selectively reduces hippocampal volume in rats: a longitudinal magnetic resonance imaging study. NeuroReport, 2009, 20, 1554-1558.	1.2	146
34	Dorsal periaqueductal gray-amygdala pathway conveys both innate and learned fear responses in rats. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14795-14800.	7.1	144
35	Acquisition of fear conditioning in rats requires the synthesis of mRNA in the amygdala Behavioral Neuroscience, 1999, 113, 276-282.	1.2	142
36	Selective impairment of long-term but not short-term conditional fear by the N-methyl-D-aspartate antagonist APV Behavioral Neuroscience, 1992, 106, 591-596.	1.2	141

#	Article	IF	CITATIONS
37	Multiple brain-memory systems: the whole does not equal the sum of its parts. Trends in Neurosciences, 2001, 24, 324-330.	8.6	141
38	Differential effects of the N-methyl-D-aspartate antagonist DL-2-amino-5-phosphonovalerate on acquisition of fear of auditory and contextual cues Behavioral Neuroscience, 1994, 108, 235-240.	1.2	133
39	Differential Effects of Cerebellar, Amygdalar, and Hippocampal Lesions on Classical Eyeblink Conditioning in Rats. Journal of Neuroscience, 2004, 24, 3242-3250.	3.6	133
40	Associative Learning. International Review of Neurobiology, 1997, 41, 151-189.	2.0	132
41	Cerebellar cortical inhibition and classical eyeblink conditioning. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1592-1597.	7.1	125
42	Early life manipulations alter learning and memory in rats. Neuroscience and Biobehavioral Reviews, 2012, 36, 1985-2006.	6.1	122
43	Amygdalar Lateralization in Fear Conditioning: Evidence for Greater Involvement of the Right Amygdala Behavioral Neuroscience, 2004, 118, 15-23.	1.2	121
44	Hippocampal lesions impair contextual fear conditioning in two strains of mice Behavioral Neuroscience, 1996, 110, 1177-1180.	1.2	107
45	Stress-induced alterations in hippocampal plasticity, place cells, and spatial memory. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18297-18302.	7.1	106
46	A thalamoâ€corticoâ€amygdala pathway mediates auditory fear conditioning in the intact brain. European Journal of Neuroscience, 2006, 24, 894-900.	2.6	93
47	Neuroethological studies of fear, anxiety, and risky decision-making in rodents and humans. Current Opinion in Behavioral Sciences, 2015, 5, 8-15.	3.9	92
48	The Nature of Reinforcement in Cerebellar Learning. Neurobiology of Learning and Memory, 1998, 70, 150-176.	1.9	85
49	Oxytocin Protects Hippocampal Memory and Plasticity from Uncontrollable Stress. Scientific Reports, 2015, 5, 18540.	3.3	84
50	Sex-selective effects of neonatal isolation on fear conditioning and foot shock sensitivity. Behavioural Brain Research, 2005, 157, 235-244.	2.2	83
51	Selective impairment of long-term but not short-term conditional fear by the N-methyl-D-aspartate antagonist APV Behavioral Neuroscience, 1992, 106, 591-596.	1.2	81
52	Immediate shock deficit in fear conditioning: Effects of shock manipulations Behavioral Neuroscience, 2006, 120, 873-879.	1.2	68
53	Neonatal handling alters learning in adult male and female rats in a task-specific manner. Brain Research, 2007, 1154, 144-153.	2.2	65
54	Fear conditioning to tone, but not to context, is attenuated by lesions of the insular cortex and posterior extension of the intralaminar complex in rats Behavioral Neuroscience, 2001, 115, 365-375.	1.2	60

#	Article	IF	CITATIONS
55	Effects of complete immunotoxin lesions of the cholinergic basal forebrain on fear conditioning and spatial learning. Hippocampus, 2004, 14, 244-254.	1.9	59
56	Functional Imaging of Stimulus Convergence in Amygdalar Neurons during Pavlovian Fear Conditioning. PLoS ONE, 2009, 4, e6156.	2.5	59
57	Differential effects of the N-methyl-D-aspartate antagonist DL-2-amino-5-phosphonovalerate on acquisition of fear of auditory and contextual cues Behavioral Neuroscience, 1994, 108, 235-240.	1.2	59
58	Serotonin 1B Autoreceptors Originating in the Caudal Dorsal Raphe Nucleus Reduce Expression of Fear and Depression-Like Behavior. Biological Psychiatry, 2011, 69, 780-787.	1.3	55
59	Post-training injections of catecholaminergic drugs do not modulate fear conditioning in rats and mice. Neuroscience Letters, 2001, 303, 123-126.	2.1	52
60	Glucocorticoid Hyper―and Hypofunction. Annals of the New York Academy of Sciences, 2007, 1113, 291-303.	3.8	52
61	Differential effects of selective opioid peptide antagonists on the acquisition of Pavlovian fear conditioning. Peptides, 1991, 12, 1033-1037.	2.4	50
62	Learning-Induced Enduring Changes in Functional Connectivity among Prefrontal Cortical Neurons. Journal of Neuroscience, 2007, 27, 909-918.	3.6	48
63	Memory impairments and hippocampal modifications in adult rats with neonatal isolation stress experience. Neurobiology of Learning and Memory, 2007, 88, 167-176.	1.9	46
64	Alterations of Hippocampal Place Cells in Foraging Rats Facing a "Predatory―Threat. Current Biology, 2015, 25, 1362-1367.	3.9	45
65	The benzodiazepine inverse agonist DMCM as an unconditional stimulus for fear-induced analgesia: Implications for the role of GABAA receptors in fear-related behavior Behavioral Neuroscience, 1992, 106, 336-344.	1.2	43
66	Sexually Dimorphic Risk Mitigation Strategies in Rats. ENeuro, 2017, 4, ENEURO.0288-16.2017.	1.9	43
67	What Can Ethobehavioral Studies Tell Us about the Brain's Fear System?. Trends in Neurosciences, 2016, 39, 420-431.	8.6	41
68	Plasticity and Memory in the Prefrontal Cortex. Reviews in the Neurosciences, 2008, 19, 29-46.	2.9	38
69	Strain and sex differences in fear conditioning: 22 kHz ultrasonic vocalizations and freezing in rats Psychology and Neuroscience, 2009, 2, 219-225.	0.8	37
70	Dynamic coding of predatory information between the prelimbic cortex and lateral amygdala in foraging rats. Science Advances, 2018, 4, eaar7328.	10.3	33
71	Chronic amphetamine alters D-2 but not D-1 agonist-induced behavioral responses in rats. Life Sciences, 1988, 43, 1207-1213.	4.3	32
72	Stress impairs optimal behavior in a water foraging choice task in rats. Learning and Memory, 2010, 17, 1-4.	1.3	32

#	Article	IF	CITATIONS
73	Amygdalar Stimulation Produces Alterations on Firing Properties of Hippocampal Place Cells. Journal of Neuroscience, 2012, 32, 11424-11434.	3.6	30
74	The immediate-shock deficit and postshock analgesia: Implications for the relationship between the analgesic CR and UR. Learning and Behavior, 1994, 22, 72-76.	3.4	27
75	Fear paradigms: The times they are a-changin'. Current Opinion in Behavioral Sciences, 2018, 24, 38-43.	3.9	27
76	Time-Specific Fear Acts as a Non-Photic Entraining Stimulus of Circadian Rhythms in Rats. Scientific Reports, 2015, 5, 14916.	3.3	26
77	Hippocampal lesion effects on occasion setting by contextual and discrete stimuli. Neurobiology of Learning and Memory, 2011, 95, 176-184.	1.9	24
78	Chronic Stress Alters Spatial Representation and Bursting Patterns of Place Cells in Behaving Mice. Scientific Reports, 2015, 5, 16235.	3.3	24
79	Chapter 1 The gene knockout technology for the analysis of learning and memory, and neural development. Progress in Brain Research, 1995, 105, 3-14.	1.4	21
80	Fragmentation of Rapid Eye Movement and Nonrapid Eye Movement Sleep without Total Sleep Loss Impairs Hippocampus-Dependent Fear Memory Consolidation. Sleep, 2016, 39, 2021-2031.	1.1	18
81	Biologically predisposed learning and selective associations in amygdalar neurons. Learning and Memory, 2011, 18, 371-374.	1.3	17
82	Sex Differences in Foraging Rats to Naturalistic Aerial Predator Stimuli. IScience, 2019, 16, 442-452.	4.1	16
83	Auditory cortex is important in the extinction of two different tone-based conditioned fear memories in rats. Frontiers in Behavioral Neuroscience, 2010, 4, 24.	2.0	15
84	A computer vision-based automated Figure-8 maze for working memory test in rodents. Journal of Neuroscience Methods, 2006, 156, 10-16.	2.5	14
85	Amygdaloid and non-amygdaloid fear both influence avoidance of risky foraging in hungry rats. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133357.	2.6	12
86	Effects of handling and context preexposure on the immediate shock deficit. Learning and Behavior, 1995, 23, 335-339.	3.4	10
87	Amygdala, Medial Prefrontal Cortex and Glucocorticoid Interactions Produce Stress-Like Effects on Memory. Frontiers in Behavioral Neuroscience, 2019, 13, 210.	2.0	9
88	The Risky Closed Economy: A Holistic, Longitudinal Approach to Studying Fear and Anxiety in Rodents. Frontiers in Behavioral Neuroscience, 2020, 14, 594568.	2.0	7
89	Serotonin, Stress, and Conditioning. Biological Psychiatry, 2008, 63, 819-820.	1.3	6
90	Bilateral nature of the conditioned eyeblink response in the rabbit: Behavioral characteristics and potential mechanisms Behavioral Neuroscience, 2008, 122, 1306-1317.	1.2	6

0

#	Article	IF	CITATIONS
91	Brain stimulation patterns emulating endogenous thalamocortical input to parvalbumin-expressing interneurons reduce nociception in mice. Brain Stimulation, 2018, 11, 1151-1160.	1.6	6
92	â€~Fearful-place' coding in the amygdala-hippocampal network. ELife, 2021, 10, .	6.0	6
93	Brief stress impairs recognition memory through amygdalar activation in animals with medial prefrontal cortex lesions. Neuroscience Letters, 2020, 735, 135245.	2.1	5
94	Discriminative conditioning with different CS–US intervals produces temporally differentiated conditioned responses in the two eyes of the rabbit (Oryctolagus cuniculus) Behavioral Neuroscience, 2009, 123, 1085-1094.	1.2	3
95	Neuroeconomics. Frontiers in Behavioral Neuroscience, 2012, 6, 15.	2.0	3
96	A role of anterior cingulate cortex in the emergence of worker–parasite relationship. Proceedings of the United States of America, 2021, 118, .	7.1	3
97	Naltrexone does not disrupt acquisition or performance of inhibitory conditioning. Bulletin of the Psychonomic Society, 1993, 31, 591-594.	0.2	2
98	Cyclic nucleotides and memory. NeuroReport, 1996, 7, 385.	1.2	2
99	Neurobiological Foundations of Stress. , 2006, , 37-65.		2
100	Fear: Psychological and Neural Aspects. , 2015, , 868-874.		2
101	Stress impairs decision-making in rats. Nature Precedings, 2009, , .	0.1	1

Neural-Cognitive Effects of Stress in the Hippocampus. , 2014, , 151-165.