
Nuria Ferrol GonzÃ;lez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1419547/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The transcriptome of the arbuscular mycorrhizal fungus <i>Glomus intraradices</i> (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytologist, 2012, 193, 755-769.	7.3	305
2	The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications. Journal of Experimental Botany, 2016, 67, 6253-6265.	4.8	216
3	GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fungal Genetics and Biology, 2006, 43, 102-110.	2.1	175
4	Ecological and functional roles of mycorrhizas in semi-arid ecosystems of Southeast Spain. Journal of Arid Environments, 2011, 75, 1292-1301.	2.4	175
5	Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genetics and Biology, 2005, 42, 130-140.	2.1	172
6	Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus <i>Glomus intraradices</i> . Canadian Journal of Microbiology, 2008, 54, 103-110.	1.7	158
7	GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices. Fungal Genetics and Biology, 2011, 48, 1044-1055.	2.1	143
8	Review: Arbuscular mycorrhizas as key players in sustainable plant phosphorus acquisition: An overview on the mechanisms involved. Plant Science, 2019, 280, 441-447.	3.6	124
9	Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis. Frontiers in Plant Science, 2014, 5, 547.	3.6	120
10	Copper compartmentalization in spores as a survival strategy of arbuscular mycorrhizal fungi in Cu-polluted environments. Soil Biology and Biochemistry, 2013, 57, 925-928.	8.8	110
11	GintMT1 encodes a functional metallothionein in Glomus intraradices that responds to oxidative stress. Mycorrhiza, 2007, 17, 327-335.	2.8	98
12	Survival strategies of arbuscular mycorrhizal fungi in Cu-polluted environments. Phytochemistry Reviews, 2009, 8, 551-559.	6.5	89
13	Analysing arbuscular mycorrhizal fungal diversity in shrub-associated resource islands from a desertification-threatened semiarid Mediterranean ecosystem. Applied Soil Ecology, 2004, 25, 123-133.	4.3	83
14	Defense Related Phytohormones Regulation in Arbuscular Mycorrhizal Symbioses Depends on the Partner Genotypes. Journal of Chemical Ecology, 2014, 40, 791-803.	1.8	78
15	GintABC1 encodes a putative ABC transporter of the MRP subfamily induced by Cu, Cd, and oxidative stress in Glomus intraradices. Mycorrhiza, 2010, 20, 137-146.	2.8	76
16	Analysing natural diversity of arbuscular mycorrhizal fungi in olive tree (Olea europaea L.) plantations and assessment of the effectiveness of native fungal isolates as inoculants for commercial cultivars of olive plantlets. Applied Soil Ecology, 2004, 26, 11-19.	4.3	74
17	Characterization of a CuZn superoxide dismutase gene in the arbuscular mycorrhizal fungus Glomus intraradices. Current Genetics, 2010, 56, 265-274.	1.7	73
18	The plasma membrane H + -ATPase gene family in the arbuscular mycorrhizal fungus Glomus mosseae. Current Genetics, 2000, 37, 112-118.	1.7	72

Nuria Ferrol GonzÃilez

#	Article	IF	CITATIONS
19	Temporal temperature gradient gel electrophoresis (TTGE) as a tool for the characterization of arbuscular mycorrhizal fungi. FEMS Microbiology Letters, 2004, 241, 265-270.	1.8	72
20	GintGRX1, the first characterized glomeromycotan glutaredoxin, is a multifunctional enzyme that responds to oxidative stress. Fungal Genetics and Biology, 2009, 46, 94-103.	2.1	72
21	Transcriptional regulation of host transporters and GS/GOGAT pathway in arbuscular mycorrhizal rice roots. Plant Physiology and Biochemistry, 2014, 75, 1-8.	5.8	68
22	GintAMT3 – a Low-Affinity Ammonium Transporter of the Arbuscular Mycorrhizal Rhizophagus irregularis. Frontiers in Plant Science, 2016, 7, 679.	3.6	66
23	<i>Otospora bareai</i> , a new fungal species in the Glomeromycetes from a dolomitic shrub land in Sierra de Baza National Park (Granada, Spain). Mycologia, 2008, 100, 296-305.	1.9	57
24	<i>GintPDX1</i> encodes a protein involved in vitamin B6 biosynthesis that is upâ€regulated by oxidative stress in the arbuscular mycorrhizal fungus <i>Glomus intraradices</i> . New Phytologist, 2009, 184, 682-693.	7.3	53
25	Arbuscular mycorrhizal symbiosis regulates plasma membrane H+-ATPase gene expression in tomato plants. Journal of Experimental Botany, 2002, 53, 1683-1687.	4.8	48
26	A dipeptide transporter from the arbuscular mycorrhizal fungus Rhizophagus irregularis is upregulated in the intraradical phase. Frontiers in Plant Science, 2014, 5, 436.	3.6	47
27	Shedding light onto nutrient responses of arbuscular mycorrhizal plants: Nutrient interactions may lead to unpredicted outcomes of the symbiosis. Plant Science, 2014, 221-222, 29-41.	3.6	46
28	Kinetics of NH 4 + uptake by the arbuscular mycorrhizal fungus Rhizophagus irregularis. Mycorrhiza, 2012, 22, 485-491.	2.8	44
29	The arbuscular mycorrhizal fungus Rhizophagus irregularis differentially regulates the copper response of two maize cultivars differing in copper tolerance. Plant Science, 2016, 253, 68-76.	3.6	44
30	A Single Gene May Encode Differentially Localized Ca2+-ATPases in Tomato Plant Cell, 1996, 8, 1159-1169.	6.6	43
31	In vivo and in vitro effects of boron on the plasma membrane proton pump of sunflower roots. Physiologia Plantarum, 1992, 84, 49-54.	5.2	42
32	<i>Entrophospora nevadensis</i> , a new arbuscular mycorrhizal fungus from Sierra Nevada National Park (southeastern Spain). Mycologia, 2010, 102, 624-632.	1.9	38
33	Mechanisms of nutrient transport across interfaces in arbuscular mycorrhizas. Plant and Soil, 2002, 244, 231-237.	3.7	37
34	Mechanisms Underlying Heavy Metal Tolerance in Arbuscular Mycorrhizas. , 2009, , 107-122.		37
35	Transcriptional regulation of host enzymes involved in the cleavage of sucrose during arbuscular mycorrhizal symbiosis. Physiologia Plantarum, 2007, 129, 737-746.	5.2	36
36	Temporal dynamics of arbuscular mycorrhizal fungi colonizing roots of representative shrub species in a semi-arid Mediterranean ecosystem. Mycorrhiza, 2012, 22, 449-460.	2.8	34

Nuria Ferrol GonzÃilez

#	Article	IF	CITATIONS
37	Oxygenated sesquiterpenes from the wood of Juniperus oxycedrus. Phytochemistry, 1991, 30, 1551-1554.	2.9	33
38	Expression of a tomato sugar transporter is increased in leaves of mycorrhizal or Phytophthora parasitica-infected plants. Mycorrhiza, 2005, 15, 489-496.	2.8	33
39	Otospora bareai, a new fungal species in the Glomeromycetes from a dolomitic shrub land in Sierra de Baza National Park (Granada, Spain). Mycologia, 2008, 100, 296-305.	1.9	31
40	Effect of Arbuscular Mycorrhizal Colonization on Cadmium-Mediated Oxidative Stress in Glycine max (L.) Merr Plants, 2020, 9, 108.	3.5	28
41	Soluble and membrane symbiosis-related polypeptides associated with the development of arbuscular mycorrhizas in tomato (Lycopersicon esculentum). New Phytologist, 1998, 140, 135-143.	7.3	26
42	Mycorrhizal symbioses. Plant Ecophysiology, 2008, , 143-163.	1.5	26
43	Analyzing the community composition of arbuscular mycorrhizal fungi colonizing the roots of representative shrubland species in a Mediterranean ecosystem. Journal of Arid Environments, 2012, 80, 1-9.	2.4	26
44	Effect of boron on plasma membrane proton extrusion and redox activity in sunflower cells. Plant Science, 1992, 86, 41-47.	3.6	25
45	An in vivo whole-plant experimental system for the analysis of gene expression in extraradical mycorrhizal mycelium. Mycorrhiza, 2017, 27, 659-668.	2.8	25
46	Lipoxygenase activity and lipid composition of cotyledons and oil bodies of two sunflower hybrids. Plant Physiology and Biochemistry, 1998, 36, 285-291.	5.8	24
47	Alterations in the plasma membrane polypeptide pattern of tomato roots (Lycopersicon esculentum) during the development of arbuscular mycorrhiza. Journal of Experimental Botany, 2000, 51, 747-754.	4.8	23
48	Aluminium toxicity and phosphate deficiency activates antioxidant systems and up-regulates expression of phosphate transporters gene in ryegrass (Lolium perenne L.) plants. Plant Physiology and Biochemistry, 2018, 130, 445-454.	5.8	21
49	<i>Ambispora granatensis</i> , a new arbuscular mycorrhizal fungus, associated with <i>Asparagus officinalis</i> in AndalucÃa (Spain). Mycologia, 2011, 103, 333-340.	1.9	19
50	Conformational isomers of 14-hydroxy-9-epi-β-caryophyllene isolated from the wood of Juniperus oxycedrus. Tetrahedron Letters, 1989, 30, 247-250.	1.4	18
51	The Rhizophagus irregularis Genome Encodes Two CTR Copper Transporters That Mediate Cu Import Into the Cytosol and a CTR-Like Protein Likely Involved in Copper Tolerance. Frontiers in Plant Science, 2019, 10, 604.	3.6	17
52	Coordinated Nutrient Exchange in Arbuscular Mycorrhiza. , 2009, , 73-87.		16
53	The arbuscular mycorrhizal fungus <i>Rhizophagus irregularis</i> uses a reductive iron assimilation pathway for highâ€affinity iron uptake. Environmental Microbiology, 2018, 20, 1857-1872.	3.8	16
54	Editorial: Effects of Plant-Microbiome Interactions on Phyto- and Bio-Remediation Capacity. Frontiers in Plant Science, 2019, 10, 533.	3.6	14

Nuria Ferrol GonzÃilez

#	Article	IF	CITATIONS
55	Expression analysis and functional characterization of two PHT1 family phosphate transporters in ryegrass. Planta, 2020, 251, 6.	3.2	14
56	Metal Transporters in Plants. , 2013, , 19-41.		13
57	Molecular approaches to study plasma membrane H+-ATPases in arbuscular mycorrhizas. Plant and Soil, 2000, 226, 219-225.	3.7	10
58	Contribution of inoculation with arbuscular mycorrhizal fungi to the bioremediation of a copper polluted soil using Oenothera picensis. Journal of Soil Science and Plant Nutrition, 2016, , 0-0.	3.4	10
59	Characterization of Three New Glutaredoxin Genes in the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis: Putative Role of RiGRX4 and RiGRX5 in Iron Homeostasis. PLoS ONE, 2016, 11, e0149606.	2.5	9
60	Electrochemistry of copper(II) induced complexes in mycorrhizal maize plant tissues. Journal of Hazardous Materials, 2012, 203-204, 257-263.	12.4	7
61	Impact of arbuscular mycorrhiza on maize P1B-ATPases gene expression and ionome in copper-contaminated soils. Ecotoxicology and Environmental Safety, 2022, 234, 113390.	6.0	7
62	Genomics of Arbuscular Mycorrhizal Fungi. Applied Mycology and Biotechnology, 2004, 4, 379-403.	0.3	6
63	Characterization of the NRAMP Gene Family in the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis. Journal of Fungi (Basel, Switzerland), 2022, 8, 592.	3.5	5
64	A Whole-Plant Culture Method to Study Structural and Functional Traits of Extraradical Mycelium. Methods in Molecular Biology, 2020, 2146, 33-41.	0.9	3
65	Membrane Transporters, an Overview of the Arbuscular Mycorrhizal Fungal Transportome. , 2021, , 44-53.		2
66	Alterations in the plasma membrane polypeptide pattern of tomato roots (Lycopersicon esculentum) during the development of arbuscular mycorrhiza. Journal of Experimental Botany, 2000, 51, 747-754.	4.8	0
67	Functional Analysis of Arbuscular Mycorrhizal Fungal Genes in Yeast. Methods in Molecular Biology, 2020, 2146, 197-211.	0.9	0