
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1418991/publications.pdf Version: 2024-02-01

ΙΙ ΑΡΙΑ ΡΑSCUCCI

#	Article	IF	CITATIONS
1	The protoplanetary disk population in the <i>ï</i> Ophiuchi region L1688 and the time evolution of Class II YSOs. Astronomy and Astrophysics, 2022, 663, A98.	5.1	21
2	Determining Dispersal Mechanisms of Protoplanetary Disks Using Accretion and Wind Mass Loss Rates. Astrophysical Journal Letters, 2022, 926, L23.	8.3	12
3	Size and structures of disks around very low mass stars in the Taurus star-forming region. Astronomy and Astrophysics, 2021, 645, A139.	5.1	32
4	An Improved Hertzsprung–Russell Diagram for the Orion Trapezium Cluster. Astrophysical Journal, 2021, 908, 49.	4.5	17
5	An Atacama Large Millimeter/submillimeter Array Survey of Chemistry in Disks around M4–M5 Stars. Astrophysical Journal, 2021, 911, 150.	4.5	6
6	Measuring the ratio of the gas and dust emission radii of protoplanetary disks in the Lupus star-forming region. Astronomy and Astrophysics, 2021, 649, A19.	5.1	35
7	Evidence for an MHD Disk Wind via Optical Forbidden Line Spectroastrometry*. Astrophysical Journal, 2021, 913, 43.	4.5	21
8	Why do more massive stars host larger planets?. Astronomy and Astrophysics, 2021, 652, A110.	5.1	8
9	Planet formation in intermediate-separation binary systems. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4317-4328.	4.4	9
10	Why Do M Dwarfs Have More Transiting Planets?. Astrophysical Journal Letters, 2021, 920, L1.	8.3	29
11	The Mass Budgets and Spatial Scales of Exoplanet Systems and Protoplanetary Disks. Astrophysical Journal, 2021, 920, 66.	4.5	30
12	Hints on the origins of particle traps in protoplanetary disks given by the <i>M</i> _{dust} – <i>M</i> _{â<†} relation. Astronomy and Astrophysics, 2020, 635, A105.	5.1	46
13	The Evolution of Dust Disk Sizes from a Homogeneous Analysis of 1–10 Myr old Stars. Astrophysical Journal, 2020, 895, 126.	4.5	57
14	Earths in Other Solar Systems' N-body Simulations: The Role of Orbital Damping in Reproducing the Kepler Planetary Systems. Astrophysical Journal, 2020, 897, 72.	4.5	15
15	Demographics of disks around young very low-mass stars and brown dwarfs in Lupus. Astronomy and Astrophysics, 2020, 633, A114.	5.1	29
16	Pebble-driven planet formation around very low-mass stars and brown dwarfs. Astronomy and Astrophysics, 2020, 638, A88.	5.1	42
17	X-shooter survey of disk accretion in Upper Scorpius. Astronomy and Astrophysics, 2020, 639, A58.	5.1	46
18	The Big Sibling of AU Mic: A Cold Dust-rich Debris Disk around CPâ^72 2713 in the β Pic Moving Group. Astronomical Journal, 2020, 159, 288.	4.7	10

#	Article	IF	CITATIONS
19	Dual-wavelength ALMA Observations of Dust Rings in Protoplanetary Disks. Astrophysical Journal, 2020, 898, 36.	4.5	30
20	The Evolution of Disk Winds from a Combined Study of Optical and Infrared Forbidden Lines. Astrophysical Journal, 2020, 903, 78.	4.5	37
21	Hints for Icy Pebble Migration Feeding an Oxygen-rich Chemistry in the Inner Planet-forming Region of Disks. Astrophysical Journal, 2020, 903, 124.	4.5	47
22	Compact Disks in a High-resolution ALMA Survey of Dust Structures in the Taurus Molecular Cloud. Astrophysical Journal, 2019, 882, 49.	4.5	139
23	The Impact of Stripped Cores on the Frequency of Earth-size Planets in the Habitable Zone. Astrophysical Journal Letters, 2019, 883, L15.	8.3	22
24	Double-peaked [O i] Profile: A Likely Signature of the Gaseous Ring around KH 15D. Astrophysical Journal Letters, 2019, 879, L10.	8.3	7
25	Dust spreading in debris discs: do small grains cling on to their birth environment?. Monthly Notices of the Royal Astronomical Society, 2019, 487, 5874-5888.	4.4	8
26	Hints for a Turnover at the Snow Line in the Giant Planet Occurrence Rate. Astrophysical Journal, 2019, 874, 81.	4.5	151
27	Asymmetric mid-plane gas in ALMA images of HD 100546. Monthly Notices of the Royal Astronomical Society, 2019, 485, 739-752.	4.4	20
28	Kinematic Links and the Coevolution of MHD Winds, Jets, and Inner Disks from a High-resolution Optical [] Survey. Astrophysical Journal, 2019, 870, 76.	4.5	80
29	The newborn planet population emerging from ring-like structures in discs. Monthly Notices of the Royal Astronomical Society, 2019, 486, 453-461.	4.4	102
30	Ring structure in the MWC 480 disk revealed by ALMA. Astronomy and Astrophysics, 2019, 622, A75.	5.1	55
31	CLIcK: a Continuum and Line fltting Kit for circumstellar disks. Astronomy and Astrophysics, 2019, 623, A106.	5.1	6
32	The Exoplanet Population Observation Simulator. II. Population Synthesis in the Era of Kepler. Astrophysical Journal, 2019, 887, 157.	4.5	39
33	New Millimeter CO Observations of the Gas-rich Debris Disks 49 Cet and HD 32297. Astrophysical Journal, 2019, 884, 108.	4.5	32
34	An ALMA Survey of Faint Disks in the Chamaeleon I Star-forming Region: Why Are Some Class II Disks so Faint?. Astrophysical Journal, 2018, 863, 61.	4.5	23
35	A New Look at T Tauri Star Forbidden Lines: MHD-driven Winds from the Inner Disk. Astrophysical Journal, 2018, 868, 28.	4.5	67
36	A Universal Break in the Planet-to-star Mass-ratio Function of Kepler MKG Stars. Astrophysical Journal Letters, 2018, 856, L28.	8.3	30

#	Article	IF	CITATIONS
37	ALMA continuum observations of the protoplanetary disk AS 209. Astronomy and Astrophysics, 2018, 610, A24.	5.1	140
38	Gaps and Rings in an ALMA Survey of Disks in the Taurus Star-forming Region. Astrophysical Journal, 2018, 869, 17.	4.5	337
39	A likely planet-induced gap in the disc around T Cha. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 475, L62-L66.	3.3	32
40	Protoplanetary Disk Properties in the Orion Nebula Cluster: Initial Results from Deep, High-resolution ALMA Observations. Astrophysical Journal, 2018, 860, 77.	4.5	103
41	Homogeneous Analysis of the Dust Morphology of Transition Disks Observed with ALMA: Investigating Dust Trapping and the Origin of the Cavities. Astrophysical Journal, 2018, 859, 32.	4.5	72
42	A 1.3 mm SMA survey of 29 variable young stellar objects. Astronomy and Astrophysics, 2018, 612, A54.	5.1	31
43	The Exoplanet Population Observation Simulator. I. The Inner Edges of Planetary Systems. Astronomical Journal, 2018, 156, 24.	4.7	161
44	NGC 1980 Is Not a Foreground Population of Orion: Spectroscopic Survey of Young Stars with Low Extinction in Orion A. Astronomical Journal, 2017, 153, 188.	4.7	38
45	Hints for Small Disks around Very Low Mass Stars and Brown Dwarfs ^{â^—} . Astrophysical Journal, 2017, 841, 116.	4.5	29
46	ALMA Observations of the Young Substellar Binary System 2M1207. Astronomical Journal, 2017, 154, 24.	4.7	42
47	The dispersal of planet-forming discs: theory confronts observations. Royal Society Open Science, 2017, 4, 170114.	2.4	214
48	Constraints from Dust Mass and Mass Accretion Rate Measurements on Angular Momentum Transport in Protoplanetary Disks. Astrophysical Journal, 2017, 847, 31.	4.5	64
49	X-shooter study of accretion in Chamaeleon I. Astronomy and Astrophysics, 2017, 604, A127.	5.1	112
50	An ALMA Survey of CO Isotopologue Emission from Protoplanetary Disks in Chamaeleon I. Astrophysical Journal, 2017, 844, 99.	4.5	97
51	A CANDIDATE PLANETARY-MASS OBJECT WITH A PHOTOEVAPORATING DISK IN ORION. Astrophysical Journal Letters, 2016, 833, L16.	8.3	9
52	A STEEPER THAN LINEAR DISK MASS–STELLAR MASS SCALING RELATION. Astrophysical Journal, 2016, 831, 125.	4.5	354
53	M STARS IN THE TW HYA ASSOCIATION: STELLAR X-RAYS AND DISK DISSIPATION. Astronomical Journal, 2016, 152, 3.	4.7	23
54	A SUPER-SOLAR METALLICITY FOR STARS WITH HOT ROCKY EXOPLANETS. Astronomical Journal, 2016, 152, 187.	4.7	93

#	Article	IF	CITATIONS
55	TRACING SLOW WINDS FROM T TAURI STARS VIA LOW-VELOCITY FORBIDDEN LINE EMISSION. Astrophysical Journal, 2016, 831, 169.	4.5	103
56	AN INCREASE IN THE MASS OF PLANETARY SYSTEMS AROUND LOWER-MASS STARS. Astrophysical Journal, 2015, 814, 130.	4.5	191
57	NARROW Na AND K ABSORPTION LINES TOWARD T TAURI STARS: TRACING THE ATOMIC ENVELOPE OF MOLECULAR CLOUDS. Astrophysical Journal, 2015, 814, 14.	4.5	20
58	DISCOVERY OF MOLECULAR GAS AROUND HD 131835 IN AN APEX MOLECULAR LINE SURVEY OF BRIGHT DEBRIS DISKS. Astrophysical Journal, 2015, 814, 42.	4.5	56
59	A STELLAR-MASS-DEPENDENT DROP IN PLANET OCCURRENCE RATES. Astrophysical Journal, 2015, 798, 112.	4.5	209
60	ON THE ASYMMETRY OF THE OH RO-VIBRATIONAL LINES IN HD 100546. Astrophysical Journal, 2015, 800, 23.	4.5	13
61	PROBING STELLAR ACCRETION WITH MID-INFRARED HYDROGEN LINES. Astrophysical Journal, 2015, 801, 31.	4.5	46
62	VOLATILE DELIVERY TO PLANETS FROM WATER-RICH PLANETESIMALS AROUND LOW-MASS STARS. Astrophysical Journal, 2015, 804, 9.	4.5	84
63	THE SNOW LINE IN VISCOUS DISKS AROUND LOW-MASS STARS: IMPLICATIONS FOR WATER DELIVERY TO TERRESTRIAL PLANETS IN THE HABITABLE ZONE. Astrophysical Journal, 2015, 807, 9.	4.5	89
64	Constraints on photoevaporation models from (lack of) radio emission in the Corona Australis protoplanetary disks. Astronomy and Astrophysics, 2014, 570, L9.	5.1	12
65	LOW EXTREME-ULTRAVIOLET LUMINOSITIES IMPINGING ON PROTOPLANETARY DISKS. Astrophysical Journal, 2014, 795, 1.	4.5	46
66	<i>HERSCHEL</i> EVIDENCE FOR DISK FLATTENING OR GAS DEPLETION IN TRANSITIONAL DISKS. Astrophysical Journal, 2014, 787, 153.	4.5	26
67	THE ATOMIC AND MOLECULAR CONTENT OF DISKS AROUND VERY LOW-MASS STARS AND BROWN DWARFS. Astrophysical Journal, 2013, 779, 178.	4.5	51
68	PROTOPLANETARY DISK MASSES FROM STARS TO BROWN DWARFS. Astrophysical Journal, 2013, 773, 168.	4.5	103
69	GASPS—A Herschel Survey of Gas and Dust in Protoplanetary Disks: Summary and Initial Statistics. Publications of the Astronomical Society of the Pacific, 2013, 125, 477-505.	3.1	108
70	A RESOLVED DEBRIS DISK AROUND THE CANDIDATE PLANET-HOSTING STAR HD 95086. Astrophysical Journal Letters, 2013, 775, L51.	8.3	42
71	ALMA OBSERVATIONS OF THE MOLECULAR GAS IN THE DEBRIS DISK OF THE 30 Myr OLD STAR HD 21997. Astrophysical Journal, 2013, 776, 77.	4.5	107
72	UNDERSTANDING THE ORIGIN OF THE [O I] LOW-VELOCITY COMPONENT FROM T TAURI STARS. Astrophysical Journal, 2013, 772, 60.	4.5	76

#	Article	IF	CITATIONS
73	The <i>Herschel</i> /PACS view of disks around low-mass stars in Chamaleon-I. Astronomy and Astrophysics, 2013, 560, A100.	5.1	17
74	AN <i>HST</i> IMAGING SURVEY OF LOW-MASS STARS IN THE CHAMAELEON I STAR-FORMING REGION. Astronomical Journal, 2012, 144, 83.	4.7	17
75	HIGH-RESOLUTION SPECTROSCOPY OF Ne II EMISSION FROM YOUNG STELLAR OBJECTS. Astrophysical Journal, 2012, 747, 142.	4.5	60
76	A <i>HERSCHEL</i> SURVEY OF COLD DUST IN DISKS AROUND BROWN DWARFS AND LOW-MASS STARS. Astrophysical Journal, 2012, 755, 67.	4.5	65
77	FREE-FREE EMISSION AND RADIO RECOMBINATION LINES FROM PHOTOEVAPORATING DISKS. Astrophysical Journal Letters, 2012, 751, L42.	8.3	44
78	OBSERVATIONAL CONSTRAINTS ON THE STELLAR RADIATION FIELD IMPINGING ON TRANSITIONAL DISK ATMOSPHERES. Astrophysical Journal, 2012, 759, 47.	4.5	9
79	EX Lupi FROM QUIESCENCE TO OUTBURST: EXPLORING THE LTE APPROACH IN MODELING BLENDED H ₂ 0 AND OH MID-INFRARED EMISSION. Astrophysical Journal, 2012, 745, 90.	4.5	50
80	A <i>HERSCHEL</i> SEARCH FOR COLD DUST IN BROWN DWARF DISKS: FIRST RESULTS. Astrophysical Journal Letters, 2012, 744, L1.	8.3	51
81	Deserts and pile-ups in the distribution of exoplanets due to photoevaporative disc clearing. Monthly Notices of the Royal Astronomical Society: Letters, 2012, 422, L82-L86.	3.3	93
82	MOLECULAR GAS IN YOUNG DEBRIS DISKS. Astrophysical Journal Letters, 2011, 740, L7.	8.3	77
83	WATER DEPLETION IN THE DISK ATMOSPHERE OF HERBIG AeBe STARS. Astrophysical Journal, 2011, 732, 106.	4.5	57
84	EMISSION LINES FROM THE GAS DISK AROUND TW HYDRA AND THE ORIGIN OF THE INNER HOLE. Astrophysical Journal, 2011, 735, 90.	4.5	94
85	DISK IMAGING SURVEY OF CHEMISTRY WITH SMA. II. SOUTHERN SKY PROTOPLANETARY DISK DATA AND FULL SAMPLE STATISTICS. Astrophysical Journal, 2011, 734, 98.	4.5	128
86	THE PHOTOEVAPORATIVE WIND FROM THE DISK OF TW Hya. Astrophysical Journal, 2011, 736, 13.	4.5	79
87	EVIDENCE AGAINST AN EDGE-ON DISK AROUND THE EXTRASOLAR PLANET, 2MASS 1207 b AND A NEW THICK-CLOUD EXPLANATION FOR ITS UNDERLUMINOSITY [,] [,] . Astrophysical Journal, 2011, 732, 107.	4.5	82
88	STRUCTURE AND EVOLUTION OF DEBRIS DISKS AROUND F-TYPE STARS. I. OBSERVATIONS, DATABASE, AND BASIC EVOLUTIONARY ASPECTS. Astrophysical Journal, Supplement Series, 2011, 193, 4.	7.7	90
89	<i>SPITZER</i> SPECTROSCOPY OF THE TRANSITION OBJECT TW Hya. Astrophysical Journal, 2010, 712, 274-286.	4.5	74
90	STELLAR-MASS-DEPENDENT DISK STRUCTURE IN COEVAL PLANET-FORMING DISKS. Astrophysical Journal, 2010, 720, 1668-1673.	4.5	26

#	Article	IF	CITATIONS
91	THE DISK IMAGING SURVEY OF CHEMISTRY WITH SMA. I. TAURUS PROTOPLANETARY DISK DATA. Astrophysical Journal, 2010, 720, 480-493.	4.5	128
92	GRAIN GROWTH AND GLOBAL STRUCTURE OF THE PROTOPLANETARY DISK ASSOCIATED WITH THE MATURE CLASSICAL T TAURI STAR, PDS 66. Astrophysical Journal, 2009, 697, 1305-1315.	4.5	20
93	EVIDENCE FOR DISK PHOTOEVAPORATION DRIVEN BY THE CENTRAL STAR. Astrophysical Journal, 2009, 702, 724-732.	4.5	117
94	THE DIFFERENT EVOLUTION OF GAS AND DUST IN DISKS AROUND SUN-LIKE AND COOL STARS. Astrophysical Journal, 2009, 696, 143-159.	4.5	157
95	The Complete Census of 70 μm–Bright Debris Disks within "The Formation and Evolution of Planetary Systemsâ€ <i>Spitzer</i> Legacy Survey of Sunâ€kke Stars. Astrophysical Journal, 2008, 677, 630-656.	4.5	192
96	Medium‣eparation Binaries Do Not Affect the First Steps of Planet Formation. Astrophysical Journal, 2008, 673, 477-486.	4.5	69
97	Detection of [Neii] Emission from Young Circumstellar Disks. Astrophysical Journal, 2007, 663, 383-393.	4.5	104
98	Highâ€Resolution Spectroscopy of [Ne <scp>ii</scp>] Emission from TW Hydrae. Astrophysical Journal, 2007, 670, 509-515.	4.5	54
99	The Formation and Evolution of Planetary Systems: Placing Our Solar System in Context withSpitzer. Publications of the Astronomical Society of the Pacific, 2006, 118, 1690-1710.	3.1	80
100	Formation and Evolution of Planetary Systems (FEPS): Primordial Warm Dust Evolution from 3 to 30 Myr around Sunâ€like Stars. Astrophysical Journal, 2006, 639, 1138-1146.	4.5	111
101	Formation and Evolution of Planetary Systems: Upper Limits to the Gas Mass in Disks around Sunâ€like Stars. Astrophysical Journal, 2006, 651, 1177-1193.	4.5	142
102	The Onset of Planet Formation in Brown Dwarf Disks. Science, 2005, 310, 834-836.	12.6	177
103	The 2D continuum radiative transfer problem. Astronomy and Astrophysics, 2004, 417, 793-805.	5.1	98
104	Evolution of young brown dwarf disks in the mid-infrared. Astronomy and Astrophysics, 2004, 427, 245-250.	5.1	63
105	First Detection of Millimeter Dust Emission from Brown Dwarf Disks. Astrophysical Journal, 2003, 593, L57-L60.	4.5	99