
## P Couvreur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1418718/publications.pdf Version: 2024-02-01



P COUVEFUE

| #  | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 2013, 12, 991-1003.                                                                                                                                                              | 13.3 | 5,084     |
| 2  | Porous metal–organic-framework nanoscale carriers as a potential platform for drug deliveryÂand<br>imaging. Nature Materials, 2010, 9, 172-178.                                                                                                       | 13.3 | 3,629     |
| 3  | Metal–Organic Frameworks in Biomedicine. Chemical Reviews, 2012, 112, 1232-1268.                                                                                                                                                                      | 23.0 | 3,593     |
| 4  | Nanoparticles in cancer therapy and diagnosis. Advanced Drug Delivery Reviews, 2002, 54, 631-651.                                                                                                                                                     | 6.6  | 2,520     |
| 5  | Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications. Chemical Reviews, 2012, 112, 5818-5878.                                                                               | 23.0 | 1,769     |
| 6  | Nanocarriers' entry into the cell: relevance to drug delivery. Cellular and Molecular Life Sciences,<br>2009, 66, 2873-2896.                                                                                                                          | 2.4  | 1,300     |
| 7  | Design, functionalization strategies and biomedical applications of targeted<br>biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chemical Society Reviews,<br>2013, 42, 1147-1235.                                           | 18.7 | 1,104     |
| 8  | BioMOFs: Metal–Organic Frameworks for Biological and Medical Applications. Angewandte Chemie -<br>International Edition, 2010, 49, 6260-6266.                                                                                                         | 7.2  | 1,074     |
| 9  | Nanotechnology: Intelligent Design to Treat Complex Disease. Pharmaceutical Research, 2006, 23, 1417-1450.                                                                                                                                            | 1.7  | 858       |
| 10 | Nanoparticles in cancer therapy and diagnosis. Advanced Drug Delivery Reviews, 2012, 64, 24-36.                                                                                                                                                       | 6.6  | 642       |
| 11 | Nanoparticles in drug delivery: Past, present and future. Advanced Drug Delivery Reviews, 2013, 65, 21-23.                                                                                                                                            | 6.6  | 569       |
| 12 | Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomedicine and Pharmacotherapy, 2002, 56, 215-222.                                                                                                               | 2.5  | 490       |
| 13 | Design of Folic Acid onjugated Nanoparticles for Drug Targeting. Journal of Pharmaceutical<br>Sciences, 2000, 89, 1452-1464.                                                                                                                          | 1.6  | 472       |
| 14 | Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Advanced Drug<br>Delivery Reviews, 2003, 55, 519-548.                                                                                                               | 6.6  | 463       |
| 15 | Nanoparticles of Metalâ€Organic Frameworks: On the Road to In Vivo Efficacy in Biomedicine. Advanced<br>Materials, 2018, 30, e1707365.                                                                                                                | 11.1 | 459       |
| 16 | Polysaccharide-decorated nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 58, 327-341.                                                                                                                                    | 2.0  | 441       |
| 17 | Folate-Conjugated Iron Oxide Nanoparticles for Solid Tumor Targeting as Potential Specific Magnetic<br>Hyperthermia Mediators: Synthesis, Physicochemical Characterization, and in Vitro Experiments.<br>Bioconjugate Chemistry, 2005, 16, 1181-1188. | 1.8  | 439       |
| 18 | Nanocapsule Technology: A Review. Critical Reviews in Therapeutic Drug Carrier Systems, 2002, 19,<br>99-134.                                                                                                                                          | 1.2  | 435       |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Nanotheranostics for personalized medicine. Advanced Drug Delivery Reviews, 2012, 64, 1394-1416.                                                                                                  | 6.6 | 408       |
| 20 | Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery.<br>Pharmaceutical Research, 2001, 18, 1157-1166.                                               | 1.7 | 405       |
| 21 | Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties. Journal of Pharmacy and Pharmacology, 2011, 31, 331-332.                 | 1.2 | 396       |
| 22 | Stealth® PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. Journal of Controlled Release, 1999, 60, 121-128.                                        | 4.8 | 369       |
| 23 | Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications.<br>International Journal of Antimicrobial Agents, 2000, 13, 155-168.                               | 1.1 | 365       |
| 24 | Development of a New Drug Carrier Made from Alginate. Journal of Pharmaceutical Sciences, 1993, 82,<br>912-917.                                                                                   | 1.6 | 340       |
| 25 | New Approach for Oral Administration of Insulin With Polyalkylcyanoacrylate Nanocapsules as Drug<br>Carrier. Diabetes, 1988, 37, 246-251.                                                         | 0.3 | 337       |
| 26 | Nanoprecipitation and the "Ouzo effect― Application to drug delivery devices. Advanced Drug Delivery<br>Reviews, 2014, 71, 86-97.                                                                 | 6.6 | 318       |
| 27 | In depth analysis of the in vivo toxicity of nanoparticles of porous iron(iii) metal–organic<br>frameworks. Chemical Science, 2013, 4, 1597.                                                      | 3.7 | 313       |
| 28 | Self-Assembled Multicompartment Liquid Crystalline Lipid Carriers for Protein, Peptide, and Nucleic<br>Acid Drug Delivery. Accounts of Chemical Research, 2011, 44, 147-156.                      | 7.6 | 297       |
| 29 | Colloidal carriers and blood–brain barrier (BBB) translocation: A way to deliver drugs to the brain?.<br>International Journal of Pharmaceutics, 2005, 298, 274-292.                              | 2.6 | 289       |
| 30 | Pharmacokinetics and distribution of a biodegradable drug-carrier. International Journal of Pharmaceutics, 1983, 15, 335-345.                                                                     | 2.6 | 287       |
| 31 | Squalenoyl Nanomedicines as Potential Therapeutics. Nano Letters, 2006, 6, 2544-2548.                                                                                                             | 4.5 | 281       |
| 32 | Squalene: A natural triterpene for use in disease management and therapy. Advanced Drug Delivery<br>Reviews, 2009, 61, 1412-1426.                                                                 | 6.6 | 281       |
| 33 | Puromycin-based purification of rat brain capillary endothelial cell cultures. Effect on the expression of blood-brain barrier-specific properties. Journal of Neurochemistry, 2005, 93, 279-289. | 2.1 | 280       |
| 34 | Development and Brain Delivery of Chitosanâ <sup>~^</sup> PEG Nanoparticles Functionalized with the Monoclonal<br>Antibody OX26. Bioconjugate Chemistry, 2005, 16, 1503-1511.                     | 1.8 | 279       |
| 35 | Degradation of poly (isobutyl cyanoacrylate) nanoparticles. Biomaterials, 1984, 5, 65-68.                                                                                                         | 5.7 | 266       |
| 36 | Nanocarriers for antibiotics: A promising solution to treat intracellular bacterial infections.<br>International Journal of Antimicrobial Agents, 2014, 43, 485-496.                              | 1.1 | 265       |

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | II. Clutamine and glutamate. Biomedicine and Pharmacotherapy, 2002, 56, 446-457.                                                                                                                                                                | 2.5  | 264       |
| 38 | Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A.<br>Journal of Materials Chemistry, 2011, 21, 2220-2227.                                                                                       | 6.7  | 263       |
| 39 | Prodrug-based intracellular delivery of anticancer agents. Advanced Drug Delivery Reviews, 2011, 63, 3-23.                                                                                                                                      | 6.6  | 258       |
| 40 | Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporin A in polyalkylcyanoacrylate nanoparticles. Biomaterials, 2000, 21, 1-7.                                                                                    | 5.7  | 256       |
| 41 | Nano- and microparticles for the delivery of polypeptides and proteins. Advanced Drug Delivery Reviews, 1993, 10, 141-162.                                                                                                                      | 6.6  | 250       |
| 42 | Recent trends in the design of anticancer polymer prodrug nanocarriers. Polymer Chemistry, 2014, 5, 1529-1544.                                                                                                                                  | 1.9  | 246       |
| 43 | Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles. Journal of Controlled Release, 2003, 93, 151-160.                                                                                                  | 4.8  | 243       |
| 44 | Nanotechnologies for Alzheimer's disease: diagnosis, therapy, and safety issues. Nanomedicine:<br>Nanotechnology, Biology, and Medicine, 2011, 7, 521-540.                                                                                      | 1.7  | 240       |
| 45 | Poly(ethylene glycol)-Coated Hexadecylcyanoacrylate Nanospheres Display a Combined Effect for<br>Brain Tumor Targeting. Journal of Pharmacology and Experimental Therapeutics, 2002, 303, 928-936.                                              | 1.3  | 237       |
| 46 | Nanocapsules as carriers for oral peptide delivery. Journal of Controlled Release, 1990, 13, 233-239.                                                                                                                                           | 4.8  | 229       |
| 47 | Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury.<br>Nature Nanotechnology, 2014, 9, 1054-1062.                                                                                                   | 15.6 | 207       |
| 48 | "Smart―delivery of antisense oligonucleotides by anionic pH-sensitive liposomes. Advanced Drug<br>Delivery Reviews, 2004, 56, 931-946.                                                                                                          | 6.6  | 201       |
| 49 | Toxicity of Polyalkylcyanoacrylate Nanoparticles II: Doxorubicin-Loaded Nanoparticles. Journal of<br>Pharmaceutical Sciences, 1982, 71, 790-792.                                                                                                | 1.6  | 199       |
| 50 | Increase of doxorubicin sensitivity by doxorubicin-loading into nanoparticles for hepatocellular carcinoma cells in vitro and in vivo. Journal of Hepatology, 2005, 42, 736-743.                                                                | 1.8  | 196       |
| 51 | Visualization of in vitro protein-rejecting properties of PEGylated stealth® polycyanoacrylate nanoparticles. Biomaterials, 1999, 20, 1269-1275.                                                                                                | 5.7  | 195       |
| 52 | I. Arginine. Biomedicine and Pharmacotherapy, 2002, 56, 439-445.                                                                                                                                                                                | 2.5  | 194       |
| 53 | Surface-engineered nanoparticles for multiple ligand coupling. Biomaterials, 2003, 24, 4529-4537.                                                                                                                                               | 5.7  | 182       |
| 54 | A unique squalenoylated and nonpegylated doxorubicin nanomedicine with systemic long-circulating<br>properties and anticancer activity. Proceedings of the National Academy of Sciences of the United<br>States of America, 2014, 111, E217-26. | 3.3  | 182       |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The Design of Nanoparticles Obtained by Solvent Evaporation:  A Comprehensive Study. Langmuir, 2003,<br>19, 9504-9510.                                                                                                 | 1.6 | 180       |
| 56 | Nanoparticulate systems for the delivery of antisense oligonucleotides. Advanced Drug Delivery<br>Reviews, 2001, 47, 99-112.                                                                                           | 6.6 | 179       |
| 57 | Multicellular spheroid based on a triple co-culture: A novel 3D model to mimic pancreatic tumor complexity. Acta Biomaterialia, 2018, 78, 296-307.                                                                     | 4.1 | 179       |
| 58 | Study of emulsion stabilization by graft copolymers using the optical analyzer Turbiscan.<br>International Journal of Pharmaceutics, 2003, 254, 77-82.                                                                 | 2.6 | 178       |
| 59 | Influence of polysaccharide coating on the interactions of nanoparticles with biological systems.<br>Biomaterials, 2006, 27, 108-118.                                                                                  | 5.7 | 178       |
| 60 | Cyclodextrins for drug delivery. Journal of Drug Targeting, 2010, 18, 645-656.                                                                                                                                         | 2.1 | 174       |
| 61 | Translocation of Poly(ethylene glycol-co-hexadecyl)cyanoacrylate Nanoparticles into Rat Brain<br>Endothelial Cells:Â Role of Apolipoproteins in Receptor-Mediated Endocytosis. Biomacromolecules,<br>2007, 8, 793-799. | 2.6 | 172       |
| 62 | A Nanomedicine Transports a Peptide Caspase-3 Inhibitor across the Blood–Brain Barrier and Provides<br>Neuroprotection. Journal of Neuroscience, 2009, 29, 13761-13769.                                                | 1.7 | 169       |
| 63 | Nanocapsules: A new type of lysosomotropic carrier. FEBS Letters, 1977, 84, 323-326.                                                                                                                                   | 1.3 | 167       |
| 64 | Adsorption of Antineoplastic Drugs to Polyalkylcyanoacrylate Nanoparticles and Their Release in Calf<br>Serum. Journal of Pharmaceutical Sciences, 1979, 68, 1521-1524.                                                | 1.6 | 165       |
| 65 | PEGylated Nanoparticles Bind to and Alter Amyloid-Beta Peptide Conformation: Toward Engineering of<br>Functional Nanomedicines for Alzheimer's Disease. ACS Nano, 2012, 6, 5897-5908.                                  | 7.3 | 164       |
| 66 | Multicellular tumor spheroids: a relevant 3D model for the in vitro preclinical investigation of polymer nanomedicines. Polymer Chemistry, 2017, 8, 4947-4969.                                                         | 1.9 | 161       |
| 67 | New approach for oral administration of insulin with polyalkylcyanoacrylate nanocapsules as drug carrier. Diabetes, 1988, 37, 246-251.                                                                                 | 0.3 | 159       |
| 68 | Low-density lipoprotein receptor-mediated endocytosis of PEGylated nanoparticles in rat brain endothelial cells. Cellular and Molecular Life Sciences, 2007, 64, 356-364.                                              | 2.4 | 157       |
| 69 | Complement consumption by poly(ethylene glycol) in different conformations chemically coupled to poly(isobutyl 2-cyanoacrylate) nanoparticles. Life Sciences, 1997, 61, 749-761.                                       | 2.0 | 154       |
| 70 | Alkylcyanoacrylate drug carriers: II. Cytotoxicity of cyanoacrylate nanoparticles with different alkyl<br>chain length. International Journal of Pharmaceutics, 1992, 84, 13-22.                                       | 2.6 | 153       |
| 71 | Poly(alkyl cyanoacrylate) Nanospheres for Oral Administration of Insulin. Journal of Pharmaceutical<br>Sciences, 1997, 86, 1403-1409.                                                                                  | 1.6 | 149       |
| 72 | Polyisobutylcyanoacrylate nanocapsules containing an aqueous core as a novel colloidal carrier for the delivery of oligonucleotides. Pharmaceutical Research, 2000, 17, 707-714.                                       | 1.7 | 149       |

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Doxorubicin-loaded nanospheres bypass tumor cell multidrug resistance. Biochemical Pharmacology,<br>1992, 44, 509-517.                                                                                                  | 2.0  | 148       |
| 74 | Design of nanoparticles of less than 50 nm diameter: preparation, characterization and drug loading.<br>International Journal of Pharmaceutics, 1990, 62, 1-7.                                                          | 2.6  | 147       |
| 75 | Metallic Colloid Nanotechnology, Applications in Diagnosis and Therapeutics. Current<br>Pharmaceutical Design, 2005, 11, 2091-2105.                                                                                     | 0.9  | 145       |
| 76 | Toxicity of metal–organic framework nanoparticles: from essential analyses to potential applications. Chemical Society Reviews, 2022, 51, 464-484.                                                                      | 18.7 | 144       |
| 77 | Reversion of multidrug resistance with polyalkylcyanoacrylate nanoparticles: towards a mechanism of action. British Journal of Cancer, 1997, 76, 198-205.                                                               | 2.9  | 143       |
| 78 | Quantification and localization of PEGylated polycyanoacrylate nanoparticles in brain and spinal cord during experimental allergic encephalomyelitis in the rat. European Journal of Neuroscience, 2002, 15, 1317-1326. | 1.2  | 142       |
| 79 | New self-assembled nanogels based on host–guest interactions: Characterization and drug loading.<br>Journal of Controlled Release, 2006, 111, 316-324.                                                                  | 4.8  | 142       |
| 80 | Polyalkylcyanoacrylate nanoparticles as polymeric carriers for antisense oligonucleotides.<br>Pharmaceutical Research, 1992, 09, 441-449.                                                                               | 1.7  | 141       |
| 81 | Squalene Based Nanocomposites: A New Platform for the Design of Multifunctional Pharmaceutical Theragnostics. ACS Nano, 2011, 5, 1513-1521.                                                                             | 7.3  | 141       |
| 82 | Phase I clinical trial and pharmacokinetic evaluation of doxorubicin carried by polyisohexylcyanoacrylate nanoparticles. Investigational New Drugs, 1992, 10, 191-199.                                                  | 1.2  | 139       |
| 83 | Tissue Distribution of Antitumor Drugs Associated with Polyalkylcyanoacrylate Nanoparticles.<br>Journal of Pharmaceutical Sciences, 1980, 69, 199-202.                                                                  | 1.6  | 137       |
| 84 | Treatment of experimental salmonellosis in mice with ampicillin-bound nanoparticles. Antimicrobial<br>Agents and Chemotherapy, 1989, 33, 1540-1543.                                                                     | 1.4  | 135       |
| 85 | Analysis of plasma protein adsorption onto PEGylated nanoparticles by complementary methods: 2-DE,<br>CE and Protein Lab-on-chip® system. Electrophoresis, 2007, 28, 2252-2261.                                         | 1.3  | 135       |
| 86 | Fe3O4/chitosan nanocomposite for magnetic drug targeting to cancer. Journal of Materials<br>Chemistry, 2012, 22, 7622.                                                                                                  | 6.7  | 132       |
| 87 | Lipid Conjugated Oligonucleotides: A Useful Strategy for Delivery. Bioconjugate Chemistry, 2012, 23, 1091-1104.                                                                                                         | 1.8  | 131       |
| 88 | Towards an Improved antiâ€HIV Activity of NRTI via Metal–Organic Frameworks Nanoparticles. Advanced<br>Healthcare Materials, 2013, 2, 1630-1637.                                                                        | 3.9  | 130       |
| 89 | Role of spleen macrophages in the clearance of scrapie agent early in pathogenesis. , 2000, 190, 495-502.                                                                                                               |      | 129       |
| 90 | PEGylated polycyanoacrylate nanoparticles as vector for drug delivery in prion diseases. Journal of<br>Neuroscience Methods, 2001, 111, 151-155.                                                                        | 1.3  | 129       |

| #   | Article                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Cyclodextrin and Polysaccharide-Based Nanogels: Entrapment of Two Hydrophobic Molecules,<br>Benzophenone and Tamoxifen. Biomacromolecules, 2009, 10, 547-554.                                   | 2.6 | 129       |
| 92  | In vitro model for the degradation of alkylcyanoacrylate nanoparticles. Biomaterials, 1990, 11, 590-595.                                                                                        | 5.7 | 128       |
| 93  | Enhanced cytotoxicity of doxorubicin encapsulated in polyisohexylcyanoacrylate nanospheres<br>against multidrug-resistant tumour cells in culture. European Journal of Cancer, 1994, 30, 89-93. | 1.3 | 128       |
| 94  | Intraocular injection of tamoxifen-loaded nanoparticles: a new treatment of experimental autoimmune uveoretinitis. European Journal of Immunology, 2004, 34, 3702-3712.                         | 1.6 | 128       |
| 95  | Palladium: a future key player in the nanomedical field?. Chemical Science, 2015, 6, 2153-2157.                                                                                                 | 3.7 | 128       |
| 96  | Pegylated nanoparticles from a novel methoxypolyethylene glycol cyanoacrylate-hexadecyl cyanoacrylate amphiphilic copolymer. Pharmaceutical Research, 1998, 15, 550-556.                        | 1.7 | 127       |
| 97  | Versatile and Efficient Targeting Using a Single Nanoparticulate Platform: Application to Cancer and<br>Alzheimer's Disease. ACS Nano, 2012, 6, 5866-5879.                                      | 7.3 | 127       |
| 98  | Polysaccharides Grafted with Polyesters: Novel Amphiphilic Copolymers for Biomedical Applications.<br>Macromolecules, 2002, 35, 9861-9867.                                                      | 2.2 | 124       |
| 99  | Tissue distribution of doxorubicin associated with polyisohexylcyanoacrylate nanoparticles. Cancer<br>Chemotherapy and Pharmacology, 1990, 26, 13-18.                                           | 1.1 | 123       |
| 100 | Biodegradable polyalkylcyanoacrylate nanoparticles for the delivery of oligonucleotides. Journal of<br>Controlled Release, 1998, 53, 137-143.                                                   | 4.8 | 123       |
| 101 | Cationic Vectors in Ocular Drug Delivery. Journal of Drug Targeting, 2004, 12, 623-633.                                                                                                         | 2.1 | 122       |
| 102 | Adsorption of oligonucleotides onto polyisohexylcyanoacrylate nanoparticles protects them against nucleases and increases their cellular uptake. Pharmaceutical Research, 1994, 11, 1370-1378.  | 1.7 | 121       |
| 103 | Actinomycin D adsorbed on polymethylcyanoacrylate nanoparticles: Increased efficiency against an experimental tumor. European Journal of Cancer, 1980, 16, 1441-1445.                           | 1.0 | 120       |
| 104 | EWS Fli-1 Antisense Nanocapsules Inhibits Ewing Sarcoma-Related Tumor in Mice. Biochemical and Biophysical Research Communications, 2000, 279, 401-406.                                         | 1.0 | 119       |
| 105 | Preparation and in vitro evaluation of chitosan nanoparticles containing a caspase inhibitor.<br>International Journal of Pharmaceutics, 2005, 298, 378-383.                                    | 2.6 | 118       |
| 106 | A Smart Metal–Organic Framework Nanomaterial for Lung Targeting. Angewandte Chemie -<br>International Edition, 2017, 56, 15565-15569.                                                           | 7.2 | 118       |
| 107 | Temperature-dependent rheological behavior of Pluronic F-127 aqueous solutions. International<br>Journal of Pharmaceutics, 1987, 39, 121-127.                                                   | 2.6 | 116       |
| 108 | Disposition Kinetics and Oral Bioavailability of Vincamine-Loaded Polyalkyl Cyanoacrylate<br>Nanoparticles. Journal of Pharmaceutical Sciences, 1986, 75, 955-958.                              | 1.6 | 115       |

| #   | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Squalenoylation: A generic platform for nanoparticular drug delivery. Journal of Controlled Release, 2012, 161, 609-618.                                                                                    | 4.8 | 115       |
| 110 | A new nanomedicine of gemcitabine displays enhanced anticancer activity in sensitive and resistant<br>leukemia types. Journal of Controlled Release, 2007, 124, 20-27.                                      | 4.8 | 114       |
| 111 | Discovery of New Hexagonal Supramolecular Nanostructures Formed by Squalenoylation of an Anticancer Nucleoside Analogue. Small, 2008, 4, 247-253.                                                           | 5.2 | 114       |
| 112 | Hepatic tissue distribution of doxorubicin-loaded nanoparticles after i.v. administration in<br>reticulosarcoma M 5076 metastasis-bearing mice. Cancer Chemotherapy and Pharmacology, 1990, 26,<br>122-126. | 1.1 | 113       |
| 113 | Uptake of doxorubicin from loaded nanoparticles in multidrug-resistant leukemic murine cells.<br>Cancer Chemotherapy and Pharmacology, 1994, 33, 504-508.                                                   | 1.1 | 113       |
| 114 | Self-Assembled Squalenoylated Penicillin Bioconjugates: An Original Approach for the Treatment of<br>Intracellular Infections. ACS Nano, 2012, 6, 3820-3831.                                                | 7.3 | 112       |
| 115 | Nanotechnology for therapy and imaging of liver diseases. Journal of Hepatology, 2011, 55, 1461-1466.                                                                                                       | 1.8 | 111       |
| 116 | Polymer nanocarriers for the delivery of small fragments of nucleic acids: Oligonucleotides and siRNA. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 71, 490-504.                           | 2.0 | 110       |
| 117 | Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer's disease-like<br>transgenic mouse model. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 609-618.      | 1.7 | 109       |
| 118 | Novel core(polyester)-shell(polysaccharide) nanoparticles: protein loading and surface modification with lectins. Journal of Controlled Release, 2003, 92, 103-112.                                         | 4.8 | 108       |
| 119 | Liposomes and nanoparticles in the treatment of intracellular bacterial infections. Pharmaceutical Research, 1991, 08, 1079-1086.                                                                           | 1.7 | 107       |
| 120 | Toxicity of Polyalkylcyanoacrylate Nanoparticles I: Free Nanoparticles. Journal of Pharmaceutical<br>Sciences, 1982, 71, 786-790.                                                                           | 1.6 | 106       |
| 121 | The Effect of Site of Administration in the Gastrointestinal Tract on the Absorption of Insulin from Nanocapsules in Diabetic Rats. Journal of Pharmacy and Pharmacology, 2011, 43, 1-5.                    | 1.2 | 106       |
| 122 | Advanced nanomedicines for the treatment of inflammatory diseases. Advanced Drug Delivery Reviews, 2020, 157, 161-178.                                                                                      | 6.6 | 105       |
| 123 | Multiple emulsion technology for the design of microspheres containing peptides and oligopeptides.<br>Advanced Drug Delivery Reviews, 1997, 28, 85-96.                                                      | 6.6 | 104       |
| 124 | Liposomes dispersed within a thermosensitive gel: a new dosage form for ocular delivery of oligonucleotides. Pharmaceutical Research, 1998, 15, 1364-1369.                                                  | 1.7 | 102       |
| 125 | Encapsulation of gemcitabine lipophilic derivatives into polycyanoacrylate nanospheres and nanocapsules. International Journal of Pharmaceutics, 2007, 344, 71-77.                                          | 2.6 | 102       |
| 126 | Novel Approaches to Deliver Gemcitabine to Cancers. Current Pharmaceutical Design, 2008, 14, 1124-1137.                                                                                                     | 0.9 | 101       |

| #   | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Novel Polysaccharide-Decorated Poly(Isobutyl Cyanoacrylate) Nanoparticles. Pharmaceutical<br>Research, 2003, 20, 1786-1793.                                                                                                                | 1.7 | 100       |
| 128 | Physicochemical characterization of ultrasmall superparamagnetic iron oxide particles (USPIO) for biomedical application as MRI contrast agents. International Journal of Nanomedicine, 2007, 2, 609-22.                                   | 3.3 | 100       |
| 129 | In Vivo Uptake of Polyisobutyl Cyanoacrylate Nanoparticles by Rat Liver Kupffer, Endothelial,<br>andParenchymal Cells. Journal of Pharmaceutical Sciences, 1984, 73, 980-982.                                                              | 1.6 | 99        |
| 130 | Polyalkylcyanoacrylate nanoparticles as drug carrier: present state and perspectives. Journal of<br>Controlled Release, 1991, 17, 187-198.                                                                                                 | 4.8 | 99        |
| 131 | Highâ€Relaxivity Magnetic Resonance Imaging (MRI) Contrast Agent Based on Supramolecular Assembly<br>between a Gadolinium Chelate, a Modified Dextran, and Polyâ€Î²â€€yclodextrin. Chemistry - A European<br>Journal, 2008, 14, 4551-4561. | 1.7 | 99        |
| 132 | Negative preclinical results with stealth® nanospheres-encapsulated Doxorubicin in an orthotopic murine brain tumor model. Journal of Controlled Release, 2004, 100, 29-40.                                                                | 4.8 | 97        |
| 133 | A relevant in vitro rat model for the evaluation of blood-brain barrier translocation of nanoparticles. Cellular and Molecular Life Sciences, 2005, 62, 1400-1408.                                                                         | 2.4 | 97        |
| 134 | Self-assembled nucleolipids: from supramolecular structure to soft nucleic acid and drug delivery devices. Nucleic Acids Research, 2012, 40, 1891-1903.                                                                                    | 6.5 | 97        |
| 135 | Systemically Administered Brain-Targeted Nanoparticles Transport Peptides across the Blood—Brain<br>Barrier and Provide Neuroprotection. Journal of Cerebral Blood Flow and Metabolism, 2015, 35,<br>469-475.                              | 2.4 | 97        |
| 136 | Small-Angle Neutron and X-ray Scattering from Amphiphilic Stimuli-Responsive Diamond-Type<br>Bicontinuous Cubic Phase. Journal of the American Chemical Society, 2007, 129, 13474-13479.                                                   | 6.6 | 96        |
| 137 | Porous metal organic framework nanoparticles to address the challenges related to busulfan encapsulation. Nanomedicine, 2011, 6, 1683-1695.                                                                                                | 1.7 | 95        |
| 138 | Doxorubicin-Loaded Nanoparticles: Increased Efficiency in Murine Hepatic Metastases. Selective Cancer Therapeutics, 1989, 5, 1-11.                                                                                                         | 0.5 | 94        |
| 139 | Spongelike Alginate Nanoparticles as a New Potential System for the Delivery of Antisense<br>Oligonucleotides. Oligonucleotides, 1999, 9, 301-312.                                                                                         | 4.4 | 94        |
| 140 | Lipid prodrug nanocarriers in cancer therapy. Journal of Controlled Release, 2015, 208, 25-41.                                                                                                                                             | 4.8 | 94        |
| 141 | The Effect of Suture Technique on Adhesion Formation after Flexor Tendon Repair for Partial Lacerations in a Canine Model. Journal of Trauma, 2001, 51, 917-921.                                                                           | 2.3 | 93        |
| 142 | Efficacy of siRNA Nanocapsules Targeted Against the EWS–Fli1 Oncogene in Ewing Sarcoma.<br>Pharmaceutical Research, 2006, 23, 892-900.                                                                                                     | 1.7 | 93        |
| 143 | Intravitreal administration of antisense oligonucleotides: potential of liposomal delivery. Progress<br>in Retinal and Eye Research, 2000, 19, 131-147.                                                                                    | 7.3 | 91        |
| 144 | Synthesis of poly(alkyl cyanoacrylate)â€based colloidal nanomedicines. Wiley Interdisciplinary Reviews:<br>Nanomedicine and Nanobiotechnology, 2009, 1, 111-127.                                                                           | 3.3 | 91        |

| #   | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Innovative nanotechnologies forÂtheÂdelivery ofÂoligonucleotides andÂsiRNA. Biomedicine and<br>Pharmacotherapy, 2006, 60, 607-620.                                                                              | 2.5 | 88        |
| 146 | Squalenoyl gemcitabine nanomedicine overcomes the low efficacy of gemcitabine therapy in pancreatic cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 841-849.                              | 1.7 | 88        |
| 147 | Oligonucleotides encapsulated in pH sensitive liposomes are efficient toward Friend retrovirus.<br>Biochemical and Biophysical Research Communications, 1992, 183, 879-885.                                     | 1.0 | 87        |
| 148 | A Smart Metal–Organic Framework Nanomaterial for Lung Targeting. Angewandte Chemie, 2017, 129,<br>15771-15775.                                                                                                  | 1.6 | 87        |
| 149 | Squalenoylation Favorably Modifies the in Vivo Pharmacokinetics and Biodistribution of Gemcitabine in Mice. Drug Metabolism and Disposition, 2008, 36, 1570-1577.                                               | 1.7 | 86        |
| 150 | DNA/Fusogenic Lipid Nanocarrier Assembly: Millisecond Structural Dynamics. Journal of Physical Chemistry Letters, 2013, 4, 1959-1964.                                                                           | 2.1 | 86        |
| 151 | Conjugation of squalene to gemcitabine as unique approach exploiting endogenous lipoproteins for drug delivery. Nature Communications, 2017, 8, 15678.                                                          | 5.8 | 86        |
| 152 | Transmembrane diffusion of gemcitabine by a nanoparticulate squalenoyl prodrug: An original drug<br>delivery pathway. Journal of Controlled Release, 2010, 147, 163-170.                                        | 4.8 | 85        |
| 153 | Spontaneous association of hydrophobized dextran and poly-β-cyclodextrin into nanoassemblies<br>Journal of Colloid and Interface Science, 2007, 307, 83-93.                                                     | 5.0 | 84        |
| 154 | Investigation of the role of macrophages on the cytotoxicity of doxorubicin and doxorubicin-loaded nanoparticles on M5076 cells in vitro. Journal of Controlled Release, 2000, 68, 283-289.                     | 4.8 | 83        |
| 155 | Novel self-assembling nanogels: Stability and lyophilisation studies. International Journal of Pharmaceutics, 2007, 332, 185-191.                                                                               | 2.6 | 83        |
| 156 | Nanoparticles with Inâ€Vivo Anticancer Activity from Polymer Prodrug Amphiphiles Prepared by Living<br>Radical Polymerization. Angewandte Chemie - International Edition, 2013, 52, 1678-1682.                  | 7.2 | 83        |
| 157 | Small-Angle X-ray Scattering Investigations of Biomolecular Confinement, Loading, and Release from<br>Liquid-Crystalline Nanochannel Assemblies. Journal of Physical Chemistry Letters, 2012, 3, 445-457.       | 2.1 | 81        |
| 158 | Antiglaucomatous activity of betaxolol chlorhydrate sorbed onto different isobutylcyanoacrylate nanoparticle preparations. International Journal of Pharmaceutics, 1990, 58, 115-122.                           | 2.6 | 80        |
| 159 | Synthesis of a Novel Poly(MePEG cyanoacrylate-co-alkyl cyanoacrylate) Amphiphilic Copolymer for<br>Nanoparticle Technology. Macromolecules, 1997, 30, 846-851.                                                  | 2.2 | 80        |
| 160 | Novel polyester-polysaccharide nanoparticles. Pharmaceutical Research, 2003, 20, 1284-1292.                                                                                                                     | 1.7 | 80        |
| 161 | Adsorption/desorption of human serum albumin at the surface of poly(lactic acid) nanoparticles prepared by a solvent evaporation process. Journal of Biomedical Materials Research Part B, 1993, 27, 1019-1028. | 3.0 | 79        |
| 162 | Increased bone marrow toxicity of doxorubicin bound to nanoparticles. European Journal of Cancer, 1994, 30, 820-826.                                                                                            | 1.3 | 79        |

| #   | Article                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Tamoxifen encapsulation within polyethylene glycol-coated nanospheres. A new antiestrogen formulation. International Journal of Pharmaceutics, 2001, 214, 37-42.                                    | 2.6 | 79        |
| 164 | Radical Emulsion Polymerization of Alkylcyanoacrylates Initiated by the Redox System<br>Dextranâ^'Cerium(IV) under Acidic Aqueous Conditions. Macromolecules, 2003, 36, 6018-6027.                  | 2.2 | 79        |
| 165 | Physicochemical and Morphological Characterization of Polyisobutyl Cyanoacrylate Nanocapsules.<br>Journal of Pharmaceutical Sciences, 1986, 75, 361-364.                                            | 1.6 | 77        |
| 166 | Study of the mechanisms of formation of nanoparticles and nanocapsules of polyisobutyl-2-cyanoacrylate. International Journal of Pharmaceutics, 1993, 100, 55-64.                                   | 2.6 | 77        |
| 167 | Squalene-based multidrug nanoparticles for improved mitigation of uncontrolled inflammation in rodents. Science Advances, 2020, 6, eaaz5466.                                                        | 4.7 | 77        |
| 168 | Heparin coated poly(alkylcyanoacrylate) nanoparticles coupled to hemoglobin: a new oxygen carrier.<br>Biomaterials, 2004, 25, 3081-3086.                                                            | 5.7 | 76        |
| 169 | Long-Living Intermediates during a Lamellar to a Diamond-Cubic Lipid Phase Transition: A Small-Angle<br>X-Ray Scattering Investigation. Langmuir, 2009, 25, 3734-3742.                              | 1.6 | 76        |
| 170 | Specific Antitumor Targetable β-Cyclodextrinâ^'Poly(ethylene Glycol)â^'Folic Acid Drug Delivery<br>Bioconjugate. Bioconjugate Chemistry, 2004, 15, 997-1004.                                        | 1.8 | 75        |
| 171 | Detailed Structure of Diamond-Type Lipid Cubic Nanoparticles. Journal of the American Chemical<br>Society, 2006, 128, 5813-5817.                                                                    | 6.6 | 75        |
| 172 | Nanotechnologies for drug delivery: Application to cancer and autoimmune diseases. Progress in<br>Solid State Chemistry, 2006, 34, 231-235.                                                         | 3.9 | 75        |
| 173 | New magnetic drug carrier. Journal of Pharmacy and Pharmacology, 2011, 35, 59-61.                                                                                                                   | 1.2 | 75        |
| 174 | Synthesis, Characterization, and in Vivo Delivery of siRNA-Squalene Nanoparticles Targeting Fusion<br>Oncogene in Papillary Thyroid Carcinoma. Journal of Medicinal Chemistry, 2011, 54, 4067-4076. | 2.9 | 75        |
| 175 | Development of a nanoparticle controlled-release formulation for human use. Journal of Controlled Release, 1986, 3, 205-210.                                                                        | 4.8 | 74        |
| 176 | Preclinical Toxicology (Subacute and Acute) and Efficacy of a New Squalenoyl Gemcitabine Anticancer<br>Nanomedicine. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 484-490.     | 1.3 | 73        |
| 177 | Effect of polymeric nanoparticle administration on the clearance activity of the mononuclear phagocyte system in mice. , 1996, 31, 401-408.                                                         |     | 72        |
| 178 | Novel Nanoassemblies Composed of Squalenoylâ^'Paclitaxel Derivatives: Synthesis, Characterization, and Biological Evaluation. Bioconjugate Chemistry, 2010, 21, 1349-1361.                          | 1.8 | 72        |
| 179 | Effectiveness of nanoparticle-bound ampicillin in the treatment of Listeria monocytogenes infection in athymic nude mice. Antimicrobial Agents and Chemotherapy, 1988, 32, 1204-1207.               | 1.4 | 71        |
| 180 | Development of sterically stabilized poly(isobutyl 2-cyanoacrylate) nanoparticles by chemical coupling of poly(ethylene glycol). , 1997, 34, 317-326.                                               |     | 71        |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Polyalkylcyanoacrylate nanoparticles for delivery of drugs across the blood–brain barrier. Wiley<br>Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2009, 1, 463-474.                  | 3.3 | 71        |
| 182 | Pharmacokinetics and biodistribution of oligonucleotide adsorbed onto poly(isobutylcyanoacrylate) nanoparticles after intravenous administration in mice. Pharmaceutical Research, 1996, 13, 38-43.   | 1.7 | 70        |
| 183 | Facile Synthesis of Innocuous Comb-Shaped Polymethacrylates with PEG Side Chains by<br>Nitroxide-Mediated Radical Polymerization in Hydroalcoholic Solutions. Macromolecules, 2010, 43,<br>9291-9303. | 2.2 | 70        |
| 184 | Ability of doxorubicin-loaded nanoparticles to overcome multidrug resistance of tumor cells after their capture by macrophages. Pharmaceutical Research, 1999, 16, 1710-1716.                         | 1.7 | 69        |
| 185 | GraftFast Surface Engineering to Improve MOF Nanoparticles Furtiveness. Small, 2018, 14, e1801900.                                                                                                    | 5.2 | 69        |
| 186 | Magnetically responsive microspheres for the pulsed delivery of insulin. Life Sciences, 1988, 42, 1521-1528.                                                                                          | 2.0 | 68        |
| 187 | First peptide/protein PEGylation with functional polymers designed by nitroxide-mediated polymerization. Polymer Chemistry, 2011, 2, 1523.                                                            | 1.9 | 68        |
| 188 | An efficient system for intracellular delivery of beta-lactam antibiotics to overcome bacterial resistance. Scientific Reports, 2015, 5, 13500.                                                       | 1.6 | 68        |
| 189 | Reversion of multidrug resistance using nanoparticles in vitro: Influence of the nature of the polymer. International Journal of Pharmaceutics, 1996, 138, 237-246.                                   | 2.6 | 67        |
| 190 | Evaluation of hepatic antioxidant systems after intravenous administration of polymeric nanoparticles. Biomaterials, 1997, 18, 511-517.                                                               | 5.7 | 67        |
| 191 | Novel PEGylated Nanoassemblies Made of Selfâ€Assembled Squalenoyl Nucleoside Analogues. Advanced<br>Functional Materials, 2008, 18, 3715-3725.                                                        | 7.8 | 67        |
| 192 | Therapeutic Modalities of Squalenoyl Nanocomposites in Colon Cancer: An Ongoing Search for<br>Improved Efficacy. ACS Nano, 2014, 8, 2018-2032.                                                        | 7.3 | 67        |
| 193 | Visualization of insulin-loaded nanocapsules: in vitro and in vivo studies after oral administration to rats. Pharmaceutical Research, 2003, 20, 1071-1084.                                           | 1.7 | 66        |
| 194 | Extensive surface studies help to analyse zeta potential data: the case of cationic emulsions.<br>Chemistry and Physics of Lipids, 2004, 131, 1-13.                                                   | 1.5 | 66        |
| 195 | Interactions of anticancer drugs with biomembranes: What can we learn from model membranes?.<br>Journal of Controlled Release, 2014, 190, 127-138.                                                    | 4.8 | 66        |
| 196 | Efficient "green―encapsulation of a highly hydrophilic anticancer drug in metal–organic framework<br>nanoparticles. Journal of Drug Targeting, 2015, 23, 759-767.                                     | 2.1 | 66        |
| 197 | Attachment of antibiotics to nanoparticles: preparation, drug-release and antimicrobial activity in vitro. International Journal of Pharmaceutics, 1987, 35, 121-127.                                 | 2.6 | 65        |
| 198 | Development of ciprofloxacin-loaded nanoparticles: physicochemical study of the drug carrier.<br>Journal of Controlled Release, 1998, 56, 23-32.                                                      | 4.8 | 65        |

| #   | Article                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Insulin-loaded nanocapsules for oral administration: In vitro and in vivo investigation. Drug<br>Development Research, 2000, 49, 109-117.                                                                                                                                          | 1.4 | 65        |
| 200 | Polyisoprenoyl gemcitabine conjugates self assemble as nanoparticles, useful for cancer therapy.<br>Cancer Letters, 2013, 334, 346-353.                                                                                                                                            | 3.2 | 65        |
| 201 | Nanoparticles as microcarriers for anticancer drugs. Advanced Drug Delivery Reviews, 1990, 5, 209-230.                                                                                                                                                                             | 6.6 | 64        |
| 202 | Nanoparticles as carriers for growth hormone releasing factor. Journal of Controlled Release, 1991, 15, 3-13.                                                                                                                                                                      | 4.8 | 64        |
| 203 | Effect of nanoparticle-bound ampicillin on the survival of Listeria monocytogenes in mouse peritoneal macrophages. Journal of Antimicrobial Chemotherapy, 1992, 30, 173-179.                                                                                                       | 1.3 | 64        |
| 204 | Lymphatic targeting of polymeric nanoparticles after intraperitoneal administration in rats.<br>Pharmaceutical Research, 1992, 09, 1534-1539.                                                                                                                                      | 1.7 | 64        |
| 205 | Study of the mechanism of insulin encapsulation in poly(isobutylcyanoacrylate) nanocapsules obtained by interfacial polymerization. , 1999, 47, 568-576.                                                                                                                           |     | 63        |
| 206 | Novel composite core-shell nanoparticles as busulfan carriers. Journal of Controlled Release, 2006, 111, 271-280.                                                                                                                                                                  | 4.8 | 63        |
| 207 | In vivo behavior of MIL-100 nanoparticles at early times after intravenous administration.<br>International Journal of Pharmaceutics, 2016, 511, 1042-1047.                                                                                                                        | 2.6 | 63        |
| 208 | Molecular weights of free and drug-loaded nanoparticles. Pharmaceutical Research, 1985, 02, 36-41.                                                                                                                                                                                 | 1.7 | 62        |
| 209 | Inhibition of the Friend retrovirus by antisense oligonucleotides encapsulated in liposomes: mechanism of action. Pharmaceutical Research, 1993, 10, 1427-1433.                                                                                                                    | 1.7 | 62        |
| 210 | Intravitreal delivery of oligonucleotides by sterically stabilized liposomes. Investigative Ophthalmology and Visual Science, 2002, 43, 253-9.                                                                                                                                     | 3.3 | 62        |
| 211 | A new painkiller nanomedicine to bypass the blood-brain barrier and the use of morphine. Science Advances, 2019, 5, eaau5148.                                                                                                                                                      | 4.7 | 61        |
| 212 | A methodology to study intracellular distribution of nanoparticles in brain endothelial cells.<br>International Journal of Pharmaceutics, 2005, 298, 310-314.                                                                                                                      | 2.6 | 60        |
| 213 | A Squalene-Based Nanomedicine for Oral Treatment of Colon Cancer. Cancer Research, 2017, 77, 2964-2975.                                                                                                                                                                            | 0.4 | 60        |
| 214 | Nanomedicines for Pediatric Cancers. ACS Nano, 2018, 12, 7482-7496.                                                                                                                                                                                                                | 7.3 | 60        |
| 215 | SG1 Nitroxide-Mediated Polymerization of Isoprene: Alkoxyamine Structure/Control Relationship and<br>α,ω–Chain-End Functionalization. Macromolecules, 2011, 44, 9230-9238.                                                                                                         | 2.2 | 59        |
| 216 | A small variation in average particle size of PLGA nanoparticles prepared by nanoprecipitation leads to<br>considerable change in nanoparticles' characteristics and efficacy of intracellular delivery. Artificial<br>Cells, Nanomedicine and Biotechnology, 2017, 45, 1657-1664. | 1.9 | 59        |

| #   | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Selfâ€assembling cyclodextrin based hydrogels for the sustained delivery of hydrophobic drugs.<br>Journal of Biomedical Materials Research - Part A, 2008, 86A, 736-748.                                                                                      | 2.1 | 58        |
| 218 | Comblike Polymethacrylates with Poly(ethylene glycol) Side Chains via Nitroxide-Mediated Controlled<br>Free-Radical Polymerization. Macromolecules, 2008, 41, 3758-3761.                                                                                      | 2.2 | 58        |
| 219 | Protective immunity against Salmonella typhimurium elicited in mice by oral vaccination with phosphorylcholine encapsulated in poly(DL-lactide-co-glycolide) microspheres. Infection and Immunity, 1997, 65, 853-857.                                         | 1.0 | 58        |
| 220 | Alkylcyanoacrylate drug carriers: I. Physicochemical characterization of nanoparticles with different alkyl chain length. International Journal of Pharmaceutics, 1992, 84, 1-11.                                                                             | 2.6 | 57        |
| 221 | Solvent selection causes remarkable shifts of the "Ouzo region―for poly(lactide-co-glycolide)<br>nanoparticles prepared by nanoprecipitation. Nanoscale, 2015, 7, 9215-9221.                                                                                  | 2.8 | 57        |
| 222 | Characterization of V3 BRU peptide-loaded small PLGA microspheres prepared by a (w1/o)w2 emulsion solvent evaporation method. International Journal of Pharmaceutics, 1994, 111, 137-145.                                                                     | 2.6 | 56        |
| 223 | Cells Involved in the Capture of Nanoparticles in Hematopoietic Organs. Journal of Pharmaceutical Sciences, 1996, 85, 944-950.                                                                                                                                | 1.6 | 56        |
| 224 | Measurement of the Density of Polymeric Nanoparticulate Drug Carriers by Isopycnic Centrifugation.<br>Journal of Nanoparticle Research, 1999, 1, 411-418.                                                                                                     | 0.8 | 56        |
| 225 | Design of triptorelin loaded nanospheres for transdermal iontophoretic administration.<br>International Journal of Pharmaceutics, 2001, 214, 31-35.                                                                                                           | 2.6 | 56        |
| 226 | Encapsulation of mono- and oligo-nucleotides into aqueous-core nanocapsules in presence of various water-soluble polymers. International Journal of Pharmaceutics, 2007, 331, 148-152.                                                                        | 2.6 | 56        |
| 227 | Colloidal stability of ultrasmall superparamagnetic iron oxide (USPIO) particles with different coatings. International Journal of Pharmaceutics, 2007, 331, 197-203.                                                                                         | 2.6 | 56        |
| 228 | Multifunctional squalene-based prodrug nanoparticles for targeted cancer therapy. Chemical<br>Communications, 2014, 50, 5336-5338.                                                                                                                            | 2.2 | 56        |
| 229 | A Druggable Pocket at the Nucleocapsid/Phosphoprotein Interaction Site of Human Respiratory<br>Syncytial Virus. Journal of Virology, 2015, 89, 11129-11143.                                                                                                   | 1.5 | 56        |
| 230 | Light sheet fluorescence microscopy versus confocal microscopy: in quest of a suitable tool to<br>assess drug and nanomedicine penetration into multicellular tumor spheroids. European Journal of<br>Pharmaceutics and Biopharmaceutics, 2019, 142, 195-203. | 2.0 | 56        |
| 231 | Characterization of a new ocular delivery system based on a dispersion of liposomes in a thermosensitive gel. International Journal of Pharmaceutics, 1998, 162, 119-127.                                                                                     | 2.6 | 55        |
| 232 | Anticancer Efficacy of Squalenoyl Gemcitabine Nanomedicine on 60 Human Tumor Cell Panel and on<br>Experimental Tumor. Molecular Pharmaceutics, 2009, 6, 1526-1535.                                                                                            | 2.3 | 55        |
| 233 | Polymer Prodrug Nanoparticles Based on Naturally Occurring Isoprenoid for Anticancer Therapy.<br>Biomacromolecules, 2013, 14, 2837-2847.                                                                                                                      | 2.6 | 55        |
| 234 | PEGylated squalenoyl-gemcitabine nanoparticles for the treatment ofÂglioblastoma. Biomaterials, 2016,<br>105, 136-144.                                                                                                                                        | 5.7 | 55        |

| #   | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Polyalkylcyanoacrylate nanoparticles as carriers for granulocyte-colony stimulating factor (G-CSF).<br>Journal of Controlled Release, 1998, 52, 131-139.                                                                                                    | 4.8 | 54        |
| 236 | Spleen capture of nanoparticles: influence of animal species and surface characteristics.<br>Pharmaceutical Research, 1999, 16, 37-41.                                                                                                                      | 1.7 | 54        |
| 237 | Encapsulation of antiviral nucleotide analogues azidothymidine-triphosphate and cidofovir in poly(iso-butylcyanoacrylate) nanocapsules. International Journal of Pharmaceutics, 2006, 324, 37-42.                                                           | 2.6 | 54        |
| 238 | Magnetoresponsive Squalenoyl Gemcitabine Composite Nanoparticles for Cancer Active Targeting.<br>Langmuir, 2008, 24, 7512-7519.                                                                                                                             | 1.6 | 54        |
| 239 | Biodegradable microparticles for the mucosal delivery of antibacterial and dietary antigens.<br>International Journal of Pharmaceutics, 2002, 242, 15-24.                                                                                                   | 2.6 | 53        |
| 240 | siRNA nanoformulation against the Ret/PTC1 junction oncogene is efficient in an in vivo model of papillary thyroid carcinoma. Nucleic Acids Research, 2007, 36, e2-e2.                                                                                      | 6.5 | 53        |
| 241 | Superior Preclinical Efficacy of Gemcitabine Developed As Chitosan Nanoparticulate System.<br>Biomacromolecules, 2011, 12, 97-104.                                                                                                                          | 2.6 | 53        |
| 242 | Evaluation of Liver Toxicological Effects Induced by Polyalkylcyanoacrylate Nanoparticles.<br>Toxicology and Applied Pharmacology, 1995, 130, 272-279.                                                                                                      | 1.3 | 51        |
| 243 | Acute renal toxicity of doxorubicin (adriamycin)-loaded cyanoacrylate nanoparticles. Pharmaceutical<br>Research, 1995, 12, 85-87.                                                                                                                           | 1.7 | 51        |
| 244 | Role of gut macrophages in mice orally contaminated with scrapie or BSE. International Journal of Pharmaceutics, 2005, 298, 293-304.                                                                                                                        | 2.6 | 51        |
| 245 | Physico-chemical characterization of polysaccharide-coated nanoparticles. Journal of Controlled Release, 2005, 108, 97-111.                                                                                                                                 | 4.8 | 51        |
| 246 | Nanotechnologies for the treatment of colon cancer: From old drugs to new hope. International<br>Journal of Pharmaceutics, 2016, 514, 24-40.                                                                                                                | 2.6 | 51        |
| 247 | Liposome-entrapped ampicillin in the treatment of experimental murine listeriosis and salmonellosis.<br>Antimicrobial Agents and Chemotherapy, 1991, 35, 770-772.                                                                                           | 1.4 | 50        |
| 248 | Submicron cationic emulsions as a new delivery system for oligonucleotides. Pharmaceutical<br>Research, 1999, 16, 30-36.                                                                                                                                    | 1.7 | 50        |
| 249 | New Method Based on Capillary Electrophoresis with Laser-Induced Fluorescence Detection (CE-LIF) to<br>Monitor Interaction between Nanoparticles and the Amyloid-β Peptide. Analytical Chemistry, 2010, 82,<br>10083-10089.                                 | 3.2 | 50        |
| 250 | Comproportionation versus Disproportionation in the Initiation Step of Cu(0)-Mediated Living Radical Polymerization. Macromolecules, 2012, 45, 7388-7396.                                                                                                   | 2.2 | 50        |
| 251 | Intracellular distribution of ampicillin in murine macrophages infected with Salmonella typhimurium<br>and treated with (3H)ampicillin-loaded nanoparticles. Journal of Antimicrobial Chemotherapy, 1996, 37,<br>105-115.                                   | 1.3 | 49        |
| 252 | Characterization and morphological analysis of a cholecystokinin derivative peptide-loaded poly(lactide-co-glycolide) microspheres prepared by a water-in-oil-in-water emulsion solvent evaporation method. Journal of Controlled Release, 1997, 43, 81-87. | 4.8 | 49        |

| #   | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Polymeric nanoparticulate system augmented the anticancer therapeutic efficacy of gemcitabine.<br>Journal of Drug Targeting, 2009, 17, 586-598.                                                                                           | 2.1 | 49        |
| 254 | Design attributes of long-circulating polymeric drug delivery vehicles. European Journal of<br>Pharmaceutics and Biopharmaceutics, 2015, 97, 304-317.                                                                                     | 2.0 | 49        |
| 255 | Adsorption of hematoporphyrin onto polyalkylcyanoacrylate nanoparticles: carrier capacity and drug release. International Journal of Pharmaceutics, 1991, 70, 129-135.                                                                    | 2.6 | 48        |
| 256 | Improving the Antitumor Activity of Squalenoylâ€Paclitaxel Conjugate Nanoassemblies by Manipulating<br>the Linker between Paclitaxel and Squalene. Advanced Healthcare Materials, 2013, 2, 172-185.                                       | 3.9 | 48        |
| 257 | Peptide-functionalized nanoparticles for selective targeting of pancreatic tumor. Journal of<br>Controlled Release, 2014, 192, 29-39.                                                                                                     | 4.8 | 48        |
| 258 | Splenic trapping of nanoparticles: complementary approaches for in situ studies. Pharmaceutical Research, 1997, 14, 463-468.                                                                                                              | 1.7 | 47        |
| 259 | Near infrared with principal component analysis as a novel analytical approach for nanoparticle technology. Pharmaceutical Research, 2000, 17, 1124-1132.                                                                                 | 1.7 | 47        |
| 260 | Nanoencapsulation of a crystalline drug. International Journal of Pharmaceutics, 2005, 298, 323-327.                                                                                                                                      | 2.6 | 47        |
| 261 | Hybrid polymer nanocapsules enhance in vitro delivery of azidothymidine-triphosphate to macrophages. Journal of Controlled Release, 2006, 116, 346-352.                                                                                   | 4.8 | 47        |
| 262 | Optimization of polyalkylcyanoacrylate nanoparticle preparation: Influence of sulfur dioxide and pH<br>on nanoparticle characteristics. Journal of Colloid and Interface Science, 1992, 154, 77-86.                                       | 5.0 | 46        |
| 263 | Physico-chemical characterization of insulin-loaded poly(isobutylcyanoacrylate) nanocapsules obtained by interfacial polymerization. International Journal of Pharmaceutics, 1999, 183, 63-66.                                            | 2.6 | 46        |
| 264 | Simple and efficient copper metal-mediated synthesis of alkoxyamine initiators. Polymer Chemistry, 2011, 2, 1859.                                                                                                                         | 1.9 | 46        |
| 265 | Precise Engineering of Multifunctional PEGylated Polyester Nanoparticles for Cancer Cell Targeting and Imaging. Chemistry of Materials, 2014, 26, 1834-1847.                                                                              | 3.2 | 46        |
| 266 | Intracellular visualization of ampicillin-loaded nanoparticles in peritoneal macrophages infected in vitro with Salmonella typhimurium. Pharmaceutical Research, 1994, 11, 38-46.                                                         | 1.7 | 45        |
| 267 | Changing the pH of the external aqueous phase may modulate protein entrapment and delivery from poly(lactide-co-glycolide) microspheres prepared by a w/o/w solvent evaporation method. Journal of Microencapsulation, 1998, 15, 421-430. | 1.2 | 45        |
| 268 | New Core-Shell Nanoparticules for the Intravenous Delivery of siRNA to Experimental Thyroid<br>Papillary Carcinoma. Pharmaceutical Research, 2010, 27, 498-509.                                                                           | 1.7 | 45        |
| 269 | Uptake of nanoparticles by rat glomerular mesangial cells in vivo and in vitro. Pharmaceutical<br>Research, 1994, 11, 1160-1165.                                                                                                          | 1.7 | 44        |
| 270 | Protein Driven Patterning of Self-Assembled Cubosomic Nanostructures:Â Long Oriented Nanoridges.<br>Journal of Physical Chemistry B, 2005, 109, 3089-3093.                                                                                | 1.2 | 44        |

| #   | Article                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Design of fluorescently tagged poly(alkyl cyanoacrylate) nanoparticles for human brain endothelial<br>cell imaging. Chemical Communications, 2010, 46, 2602.                                                                                                               | 2.2 | 44        |
| 272 | Tissue distribution of [3H]actinomycin D adsorbed on polybutylcyanoacrylate nanoparticles.<br>International Journal of Pharmaceutics, 1980, 7, 45-53.                                                                                                                      | 2.6 | 43        |
| 273 | Preparation and characterization of novel poly(methylidene malonate 2.1.2.)-made nanoparticles.<br>Pharmaceutical Research, 1994, 11, 1270-1277.                                                                                                                           | 1.7 | 43        |
| 274 | A comprehensive study of the spontaneous formation of nanoassemblies in water by a "lock-and-key―<br>interaction between two associative polymers. Journal of Colloid and Interface Science, 2011, 354,<br>517-527.                                                        | 5.0 | 43        |
| 275 | Vidarabine-loaded nanoparticles: a physicochemical study. Pharmaceutical Research, 1990, 07, 736-741.                                                                                                                                                                      | 1.7 | 42        |
| 276 | Intracellular targeting of antibiotics by means of biodegradable nanoparticles. Journal of Controlled Release, 1992, 19, 259-267.                                                                                                                                          | 4.8 | 42        |
| 277 | Gliding resistance after repair of partially lacerated human flexor digitorum profundus tendon in<br>vitro. Clinical Biomechanics, 2001, 16, 696-701.                                                                                                                      | 0.5 | 42        |
| 278 | Nanomedicines: A New Approach for the Treatment of Serious Diseases. Journal of Biomedical Nanotechnology, 2007, 3, 223-234.                                                                                                                                               | 0.5 | 42        |
| 279 | Vitamin C–squalene bioconjugate promotes epidermal thickening and collagen production in human skin. Scientific Reports, 2020, 10, 16883.                                                                                                                                  | 1.6 | 42        |
| 280 | Some parameters influencing cytotoxicity of free doxorubicin and doxorubicin-loaded nanoparticles in sensitive and multidrug resistant leucemic murine cells: incubation time, number of nanoparticles per cell. International Journal of Pharmaceutics, 1994, 102, 55-62. | 2.6 | 41        |
| 281 | Effect of polyisobutylcyanoacrylate nanoparticles and Lipofectin® loaded with oligonucleotides on cell viability and PKCα neosynthesis in HepG2 cells. Biochimie, 1998, 80, 969-976.                                                                                       | 1.3 | 41        |
| 282 | pH-sensitive liposomes as a carrier for oligonucleotides: a physico-chemical study of the interaction<br>between DOPE and a 15-mer oligonucleotide in quasi-anhydrous samples. Biochimica Et Biophysica Acta<br>- Biomembranes, 1998, 1372, 301-310.                       | 1.4 | 41        |
| 283 | Ampicillin-loaded liposomes and nanoparticles: comparison of drug loading, drug release and <i>in vitro</i> antimicrobial activity. Journal of Microencapsulation, 1991, 8, 29-36.                                                                                         | 1.2 | 40        |
| 284 | Oral tolerance elicited in mice by β-lactoglobulin entrapped in biodegradable microspheres. Vaccine, 2000, 18, 1196-1202.                                                                                                                                                  | 1.7 | 40        |
| 285 | Therapeutic Potentialities of EWS-Fli-1 mRNA-Targeted Vectorized Antisense Oligonucleotides. Annals of the New York Academy of Sciences, 2003, 1002, 72-77.                                                                                                                | 1.8 | 40        |
| 286 | Synthesis of Highly Functionalized Poly(alkyl cyanoacrylate) Nanoparticles by Means of Click<br>Chemistry. Macromolecules, 2008, 41, 8418-8428.                                                                                                                            | 2.2 | 40        |
| 287 | Novel Isoprenoyl Nanoassembled Prodrug for Paclitaxel Delivery. Bioconjugate Chemistry, 2013, 24,<br>1840-1849.                                                                                                                                                            | 1.8 | 40        |
| 288 | Self-Assembly of Squalene-Based Nucleolipids: Relating the Chemical Structure of the Bioconjugates to the Architecture of the Nanoparticles. Langmuir, 2013, 29, 14795-14803.                                                                                              | 1.6 | 40        |

| #   | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Polyisobutylcyanoacrylate nanocapsules containing an aqueous core for the delivery of oligonucleotides. International Journal of Pharmaceutics, 2001, 214, 13-16.                                                                                       | 2.6 | 39        |
| 290 | Phospholipid hydrolysis in a pharmaceutical emulsion assessed by physicochemical parameters and a new analytical method. European Journal of Pharmaceutics and Biopharmaceutics, 2005, 61, 69-76.                                                       | 2.0 | 39        |
| 291 | Bioadhesive Properties of Poly(alkylcyanoacrylate) Nanoparticles Coated with Polysaccharide.<br>Journal of Nanoscience and Nanotechnology, 2006, 6, 3102-3109.                                                                                          | 0.9 | 39        |
| 292 | Quantification of fumaric acid in liver, spleen and urine by high-performance liquid chromatography<br>coupled to photodiode-array detection. Journal of Pharmaceutical and Biomedical Analysis, 2011, 56,<br>758-762.                                  | 1.4 | 39        |
| 293 | Circulating Lipoproteins: A Trojan Horse Guiding Squalenoylated Drugs to LDL-Accumulating Cancer<br>Cells. Molecular Therapy, 2017, 25, 1596-1605.                                                                                                      | 3.7 | 39        |
| 294 | The uptake of ampicillin-loaded nanoparticles by murine macrophages infected with Salmonella typhimurium. Journal of Antimicrobial Chemotherapy, 1994, 33, 509-522.                                                                                     | 1.3 | 38        |
| 295 | Study of the influence of several stabilizing agents on the entrapment and in vitro release of pBC 264<br>from poly(lactide-co-glycolide) microspheres prepared by a W/O/W solvent evaporation method.<br>Pharmaceutical Research, 1996, 13, 1127-1129. | 1.7 | 38        |
| 296 | Comparison of the Ocular Distribution of a Model Oligonucleotide after Topical Instillation in<br>Rabbits of Conventional and New Dosage Forms. Journal of Drug Targeting, 1998, 6, 309-313.                                                            | 2.1 | 38        |
| 297 | A polysorbate-based non-ionic surfactant can modulate loading and release of beta-lactoglobulin<br>entrapped in multiphase poly(DL-lactide-co-glycolide) microspheres. Pharmaceutical Research, 1999, 16,<br>255-260.                                   | 1.7 | 38        |
| 298 | pH-Sensitive liposomes as a carrier for oligonucleotides: a physico-chemical study of the interaction between DOPE and a 15-mer oligonucleotide in excess water. Biophysical Chemistry, 2000, 87, 127-137.                                              | 1.5 | 38        |
| 299 | Nanoplumbers: biomaterials to fight cardiovascular diseases. Materials Today, 2018, 21, 122-143.                                                                                                                                                        | 8.3 | 38        |
| 300 | Translation of nanomedicines from lab to industrial scale synthesis: The case of squalene-adenosine nanoparticles. Journal of Controlled Release, 2019, 307, 302-314.                                                                                   | 4.8 | 38        |
| 301 | A new approach for the characterization of insoluble amphiphilic copolymers based on their emulsifying properties. Colloid and Polymer Science, 2004, 282, 1097-1104.                                                                                   | 1.0 | 37        |
| 302 | â€~Green' fluorine-free mesoporous iron(III) trimesate nanoparticles for drug delivery. Green Materials,<br>2013, 1, 209-217.                                                                                                                           | 1.1 | 37        |
| 303 | Liposomes, an Interesting Tool to Deliver a Bioenergetic Substrate (ATP),in Vitroandin VivoStudies.<br>Journal of Drug Targeting, 1994, 2, 443-448.                                                                                                     | 2.1 | 36        |
| 304 | Optimization of the encapsulation and release of β-lactoglobulin entrapped poly(dl-lactide-co-glycolide) microspheres. International Journal of Pharmaceutics, 1999, 183, 67-71.                                                                        | 2.6 | 36        |
| 305 | Physicochemical Characteristics and Preliminary in Vivo Biological Evaluation of Nanocapsules<br>Loaded with siRNA Targeting Estrogen Receptor Alpha. Biomacromolecules, 2008, 9, 2881-2890.                                                            | 2.6 | 36        |
| 306 | On the mechanism of action of doxorubicin encapsulation in nanospheres for the reversal of multidrug resistance. Cancer Chemotherapy and Pharmacology, 1996, 37, 556-560.                                                                               | 1.1 | 35        |

| #   | Article                                                                                                                                                                                         | lF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | Freeze-Drying of Composite Core-Shell Nanoparticles. Drug Development and Industrial Pharmacy, 2006, 32, 839-846.                                                                               | 0.9 | 35        |
| 308 | Biological characterization of folic acid-conjugated poly(H2NPEGCA-co-HDCA) nanoparticles in cellular models. Journal of Drug Targeting, 2007, 15, 146-153.                                     | 2.1 | 35        |
| 309 | Interaction of Self-Assembled Squalenoyl Gemcitabine Nanoparticles with Phospholipidâ^'Cholesterol<br>Monolayers Mimicking a Biomembrane. Langmuir, 2011, 27, 4891-4899.                        | 1.6 | 35        |
| 310 | Peptide Conjugation: Before or After Nanoparticle Formation?. Bioconjugate Chemistry, 2014, 25, 1971-1983.                                                                                      | 1.8 | 35        |
| 311 | Protection of insulin from enzymatic degradation by its association to liposomes. International<br>Journal of Pharmaceutics, 1985, 26, 251-257.                                                 | 2.6 | 34        |
| 312 | Biodegradable nanoparticles for subcutaneous administration of growth hormone releasing factor (hGRF). Journal of Controlled Release, 1992, 20, 67-77.                                          | 4.8 | 34        |
| 313 | Liposomal squalenoyl-gemcitabine: formulation, characterization and anticancer activity evaluation.<br>Nanoscale, 2010, 2, 1521.                                                                | 2.8 | 34        |
| 314 | Antineoplastic busulfan encapsulated in a metal organic framework nanocarrier: first in vivo results.<br>Journal of Materials Chemistry B, 2016, 4, 585-588.                                    | 2.9 | 34        |
| 315 | A computationally derived structural model of doxorubicin interacting with oligomeric polyalkylcyanoacrylate in nanoparticles. Journal of Controlled Release, 2003, 92, 19-26.                  | 4.8 | 33        |
| 316 | Synthesis and biological evaluation of two glycerolipidic prodrugs of didanosine for direct<br>lymphatic delivery against HIV. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 2237-2240. | 1.0 | 33        |
| 317 | Squalenoyl nucleoside monophosphate nanoassemblies: New prodrug strategy for the delivery of nucleotide analogues. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2761-2764.             | 1.0 | 33        |
| 318 | Interaction of a new anticancer prodrug, gemcitabine–squalene, with a model membrane. Biochimica<br>Et Biophysica Acta - Biomembranes, 2010, 1798, 1522-1532.                                   | 1.4 | 33        |
| 319 | Use of Solvent Effects to Improve Control Over Nitroxideâ€Mediated Polymerization of Isoprene.<br>Macromolecular Rapid Communications, 2012, 33, 805-810.                                       | 2.0 | 33        |
| 320 | Evaluation of brain-targeted chitosan nanoparticles through blood–brain barrier cerebral<br>microvessel endothelial cells. Journal of Microencapsulation, 2017, 34, 659-666.                    | 1.2 | 33        |
| 321 | Sorptive properties of antibodies onto cyanoacrylic nanoparticles. International Journal of Pharmaceutics, 1988, 41, 181-187.                                                                   | 2.6 | 32        |
| 322 | Mucosal immunogenicity elicited in mice by oral vaccination with phosphorylcholine encapsulated in poly (d,l-lactide-co-glycolide) microspheres. Vaccine, 1998, 16, 685-691.                    | 1.7 | 32        |
| 323 | Polymer-Based Nanoparticles for the Delivery of Nucleoside Analogues. Journal of Nanoscience and Nanotechnology, 2006, 6, 2608-2617.                                                            | 0.9 | 32        |
| 324 | Squalenoyl nanomedicine of gemcitabine is more potent after oral administration in leukemia-bearing<br>rats: study of mechanisms. Anti-Cancer Drugs, 2008, 19, 999-1006.                        | 0.7 | 32        |

| #   | Article                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 325 | Interaction of an anticancer drug, gemcitabine, with phospholipid bilayers. Journal of Thermal<br>Analysis and Calorimetry, 2009, 98, 19-28.                                                      | 2.0 | 32        |
| 326 | Facile Synthesis of Multicompartment Micelles Based on Biocompatible Poly(3â€hydroxyalkanoate).<br>Macromolecular Rapid Communications, 2013, 34, 362-368.                                        | 2.0 | 32        |
| 327 | Transport Mechanisms of Squalenoyl-Adenosine Nanoparticles Across the Blood–Brain Barrier.<br>Chemistry of Materials, 2015, 27, 3636-3647.                                                        | 3.2 | 32        |
| 328 | How can nanomedicines overcome cellular-based anticancer drug resistance?. Journal of Materials<br>Chemistry B, 2016, 4, 5078-5100.                                                               | 2.9 | 32        |
| 329 | Development of dehydroemetine nanoparticles for the treatment of visceral leishmaniasis. Journal of Microencapsulation, 1989, 6, 29-34.                                                           | 1.2 | 31        |
| 330 | Efficiency of liposomal ATP in cerebral ischemia: Bioavailability features. Brain Research Bulletin, 1991, 26, 339-342.                                                                           | 1.4 | 31        |
| 331 | On the use of ion-pair chromatography to elucidate doxorubicin release mechanism from<br>polyalkylcyanoacrylate nanoparticles at the cellular level. Biomedical Applications, 1997, 702, 181-191. | 1.7 | 31        |
| 332 | In vitro evaluation of nanoparticles spleen capture. Life Sciences, 1999, 64, 1329-1337.                                                                                                          | 2.0 | 31        |
| 333 | Improvement of in vivo stability of phosphodiester oligonucleotide using anionic liposomes in mice.<br>Life Sciences, 2000, 67, 1625-1637.                                                        | 2.0 | 31        |
| 334 | Anti-HIV efficacy and biodistribution of nucleoside reverse transcriptase inhibitors delivered as squalenoylated prodrug nanoassemblies. Biomaterials, 2013, 34, 4831-4838.                       | 5.7 | 31        |
| 335 | Squalenoyl siRNA PMP22 nanoparticles are effective in treating mouse models of Charcot-Marie-Tooth disease type 1 A. Communications Biology, 2021, 4, 317.                                        | 2.0 | 31        |
| 336 | Increased eytotoxicity of nanoparticle-carried Adriamycin in vitro and potentiation by verapamil and amiodarone. Biomaterials, 1989, 10, 553-556.                                                 | 5.7 | 30        |
| 337 | Oligonucleotides targeted against a junction oncogene are made efficient by nanotechnologies.<br>Pharmaceutical Research, 2003, 20, 1565-1567.                                                    | 1.7 | 30        |
| 338 | Simple Synthesis of Cladribine-Based Anticancer Polymer Prodrug Nanoparticles with Tunable Drug<br>Delivery Properties. Chemistry of Materials, 2016, 28, 6266-6275.                              | 3.2 | 30        |
| 339 | Polyalkylcyanoacrylates as colloidal drug carriers. Critical Reviews in Therapeutic Drug Carrier Systems, 1988, 5, 1-20.                                                                          | 1.2 | 30        |
| 340 | Stability of orosomucoid-coated polyisobutylcyanoacrylate nanoparticles in the presence of serum.<br>Journal of Controlled Release, 1996, 40, 157-168.                                            | 4.8 | 29        |
| 341 | Drug targeting by polyalkylcyanoacrylate nanoparticles is not efficient against persistent Salmonella.<br>Pharmaceutical Research, 1998, 15, 544-549.                                             | 1.7 | 29        |
| 342 | Nanoparticles: heating tumors to death?. Nanomedicine, 2011, 6, 99-109.                                                                                                                           | 1.7 | 29        |

| #   | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 343 | Nanomedicine as a promising approach for the treatment and diagnosis of brain diseases: The example of Alzheimer's disease. Annales Pharmaceutiques Francaises, 2013, 71, 225-233.                                                                      | 0.4 | 29        |
| 344 | Rational design for multifunctional non-liposomal lipid-based nanocarriers for cancer management: theory to practice. Journal of Nanobiotechnology, 2013, 11, S6.                                                                                       | 4.2 | 29        |
| 345 | Towards improved HIV-microbicide activity through the co-encapsulation of NRTI drugs in<br>biocompatible metal organic framework nanocarriers. Journal of Materials Chemistry B, 2017, 5,<br>8563-8569.                                                 | 2.9 | 29        |
| 346 | Low-Density Lipoproteins and Human Serum Albumin as Carriers of Squalenoylated Drugs: Insights from Molecular Simulations. Molecular Pharmaceutics, 2018, 15, 585-591.                                                                                  | 2.3 | 29        |
| 347 | Dual controlled delivery of squalenoyl-gemcitabine and paclitaxel using thermo-responsive polymeric micelles for pancreatic cancer. Journal of Materials Chemistry B, 2018, 6, 2230-2239.                                                               | 2.9 | 29        |
| 348 | Experience with doxorubicin-bound polyisohexylcyanoacrylate nanoparticles on murine alveolar echinococcosis of the liver. International Journal for Parasitology, 1993, 23, 427-429.                                                                    | 1.3 | 28        |
| 349 | Intranasal immunization with protein-linked phosphorylcholine protects mice against a lethal intranasal challenge with Streptococcus pneumoniae. Vaccine, 2000, 18, 2991-2998.                                                                          | 1.7 | 28        |
| 350 | Significant Tumor Growth Inhibition from Naturally Occurring Lipid-Containing Polymer Prodrug<br>Nanoparticles Obtained by the Drug-Initiated Method. Chemistry of Materials, 2014, 26, 3606-3609.                                                      | 3.2 | 28        |
| 351 | Squalenoylation of Chitosan: A Platform for Drug Delivery?. Biomacromolecules, 2015, 16, 2930-2939.                                                                                                                                                     | 2.6 | 28        |
| 352 | Structural Characterization of Ultrasmall Superparamagnetic Iron Oxide (USPIO) Particles in<br>Aqueous Suspension by Energy Dispersive X-ray Diffraction (EDXD). Journal of the American Chemical<br>Society, 2006, 128, 10054-10059.                   | 6.6 | 27        |
| 353 | Liposomally-entrapped ATP: Improved efficiency against experimental brain ischemia in the rat. Life<br>Sciences, 1987, 40, 2011-2016.                                                                                                                   | 2.0 | 26        |
| 354 | The stenlying effect of high hydrostatic pressure on thermally and hydrolytically labile nanosized carriers. Pharmaceutical Research, 2003, 20, 674-683.                                                                                                | 1.7 | 26        |
| 355 | Liposomal formulation of a glycerolipidic prodrug for lymphatic delivery of didanosine via oral route. International Journal of Pharmaceutics, 2007, 344, 62-70.                                                                                        | 2.6 | 26        |
| 356 | Simultaneous determination of gemcitabine and gemcitabine-squalene by liquid<br>chromatography–tandem mass spectrometry in human plasma. Journal of Chromatography B:<br>Analytical Technologies in the Biomedical and Life Sciences, 2007, 858, 71-78. | 1.2 | 26        |
| 357 | Squalenoyl Gemcitabine Monophosphate: Synthesis, Characterisation of Nanoassemblies and<br>Biological Evaluation. European Journal of Organic Chemistry, 2011, 2011, 2615-2628.                                                                         | 1.2 | 26        |
| 358 | Novel self assembling nanoparticles for the oral administration of fondaparinux: Synthesis, characterization and in vivo evaluation. Journal of Controlled Release, 2014, 194, 323-331.                                                                 | 4.8 | 26        |
| 359 | Antineoplastic Effects of siRNA against TMPRSS2-ERG Junction Oncogene in Prostate Cancer. PLoS ONE, 2015, 10, e0125277.                                                                                                                                 | 1.1 | 26        |
| 360 | Gemcitabine-based therapy for pancreatic cancer using the squalenoyl nucleoside monophosphate nanoassemblies. International Journal of Pharmaceutics, 2015, 482, 38-46.                                                                                 | 2.6 | 26        |

| #   | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 361 | Protein-functionalized nanoparticles derived from end-functional polymers and polymer prodrugs<br>for crossing the blood-brain barrier. European Journal of Pharmaceutics and Biopharmaceutics, 2019,<br>142, 70-82.                   | 2.0 | 26        |
| 362 | PLGA nanocapsules improve the delivery of clarithromycin to kill intracellular Staphylococcus<br>aureus and Mycobacterium abscessus. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24,<br>102125.                         | 1.7 | 26        |
| 363 | Isobutyl cyanoacrylate nanoparticles as a solid phase for an efficient immunoradiometric assay.<br>Biomaterials, 1986, 7, 212-216.                                                                                                     | 5.7 | 25        |
| 364 | Factors influencing the oligonucleotides release from O–W submicron cationic emulsions. Journal of Controlled Release, 2001, 70, 243-255.                                                                                              | 4.8 | 25        |
| 365 | Molecular Reactivity of Busulfan Through Its Experimental Electrostatic Properties in the Solid State.<br>Pharmaceutical Research, 2004, 21, 598-607.                                                                                  | 1.7 | 25        |
| 366 | In Vivo Potentialities of EWS-Fli-1 Targeted Antisense Oligonucleotides-Nanospheres Complexes.<br>Annals of the New York Academy of Sciences, 2005, 1058, 52-61.                                                                       | 1.8 | 25        |
| 367 | Selegiline-functionalized, PEGylated poly(alkyl cyanoacrylate) nanoparticles: Investigation of interaction with amyloid-l <sup>2</sup> peptide and surface reorganization. International Journal of Pharmaceutics, 2011, 416, 453-460. | 2.6 | 25        |
| 368 | Liposomally entrapped adenosine triphosphate. Journal of Chromatography A, 1988, 440, 455-458.                                                                                                                                         | 1.8 | 24        |
| 369 | Enhancing the tolerance of poly(isobutylcyanoacrylate) nanoparticles with a modular surface design. International Journal of Pharmaceutics, 2007, 338, 327-332.                                                                        | 2.6 | 24        |
| 370 | Extracellular-protein-enhanced cellular uptake of squalenoyl gemcitabine from nanoassemblies. Soft<br>Matter, 2010, 6, 5570.                                                                                                           | 1.2 | 24        |
| 371 | Compartmentalized Encapsulation of Two Antibiotics in Porous Nanoparticles: an Efficient Strategy to Treat Intracellular Infections. Particle and Particle Systems Characterization, 2019, 36, 1800360.                                | 1.2 | 24        |
| 372 | Intracarotidal administration of liposomally-entrapped ATP : Improved efficiency against experimental brain ischemia. Pharmacological Research Communications, 1988, 20, 699-705.                                                      | 0.2 | 23        |
| 373 | On shelf stability of freeze-dried poly(methylidene malonate 2.1.2) nanoparticles. International<br>Journal of Pharmaceutics, 1997, 148, 165-175.                                                                                      | 2.6 | 23        |
| 374 | Quantum dot-loaded PEGylated poly(alkyl cyanoacrylate) nanoparticles for in vitro and in vivo<br>imaging. Soft Matter, 2011, 7, 6187.                                                                                                  | 1.2 | 23        |
| 375 | Synthesis and physicochemical characterization of new squalenoyl amphiphilic gadolinium complexes as nanoparticle contrast agents. Organic and Biomolecular Chemistry, 2011, 9, 4367.                                                  | 1.5 | 23        |
| 376 | Multilamellar Nanoparticles Self-Assembled from Opposite Charged Blends: Insights from Mesoscopic<br>Simulation. Journal of Physical Chemistry C, 2015, 119, 20649-20661.                                                              | 1.5 | 23        |
| 377 | Synthesis and in vitro study of a diglyceride prodrug of a peptide. Pharmaceutical Research, 1994, 11, 1082-1087.                                                                                                                      | 1.7 | 22        |
| 378 | Microcalorimetric investigation on the formation of supramolecular nanoassemblies of associative polymers loaded with gadolinium chelate derivatives. International Journal of Pharmaceutics, 2009, 379, 218-225.                      | 2.6 | 22        |

| #   | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 379 | Unloaded polyisobutylcyanoacrylate nanoparticles: efficiency against bloodstream trypanosomes.<br>Journal of Pharmacy and Pharmacology, 2011, 39, 650-652.                                                                        | 1.2 | 22        |
| 380 | Pharmacokinetics, biodistribution and metabolism of squalenoyl adenosine nanoparticles in mice using dual radio-labeling and radio-HPLC analysis. Journal of Controlled Release, 2015, 212, 50-58.                                | 4.8 | 22        |
| 381 | In Vivo FRET Imaging to Predict the Risk Associated with Hepatic Accumulation of Squaleneâ€Based<br>Prodrug Nanoparticles. Advanced Healthcare Materials, 2018, 7, 1700830.                                                       | 3.9 | 22        |
| 382 | A facile route to heterotelechelic polymer prodrug nanoparticles for imaging, drug delivery and combination therapy. Journal of Controlled Release, 2018, 286, 425-438.                                                           | 4.8 | 22        |
| 383 | REACTION OF N-BROMOSUCCINIMIDE WITH NITRILES. II.2, 3 ALIPHATIC NITRILES. Journal of Organic Chemistry, 1953, 18, 501-506.                                                                                                        | 1.7 | 21        |
| 384 | Development of a Quantitative Polyacrylamide Gel Electrophoresis Analysis Using a Multichannel<br>Radioactivity Counter for the Evaluation of Oligonucleotide-Bound Drug Carrier. Analytical<br>Biochemistry, 1996, 240, 202-209. | 1.1 | 21        |
| 385 | New bicompartmental structures are observed when stearylamine is mixed with triglyceride emulsions. Pharmaceutical Research, 2000, 17, 1329-1332.                                                                                 | 1.7 | 21        |
| 386 | Characterization of oligonucleotide/lipid interactions in submicron cationic emulsions: influence of the cationic lipid structure and the presence of PEG-lipids. Biophysical Chemistry, 2001, 92, 169-181.                       | 1.5 | 21        |
| 387 | Novel microparticulate system made of poly(methylidene malonate 2.1.2). Biomaterials, 2001, 22, 2229-2238.                                                                                                                        | 5.7 | 21        |
| 388 | Interaction of an amphiphilic squalenoyl prodrug of gemcitabine with cellular membranes. European<br>Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 612-620.                                                            | 2.0 | 21        |
| 389 | Self-Assembly of Polyisoprenoyl Gemcitabine Conjugates: Influence of Supramolecular Organization on Their Biological Activity. Langmuir, 2014, 30, 6348-6357.                                                                     | 1.6 | 21        |
| 390 | Effects of Silencing the <i>RET/PTC1</i> Oncogene in Papillary Thyroid Carcinoma by siRNA-Squalene<br>Nanoparticles With and Without Fusogenic Companion GALA-Cholesterol. Thyroid, 2014, 24, 327-338.                            | 2.4 | 21        |
| 391 | Heterotelechelic polymer prodrug nanoparticles: Adaptability to different drug combinations and influence of the dual functionalization on the cytotoxicity. Journal of Controlled Release, 2019, 295, 223-236.                   | 4.8 | 21        |
| 392 | Efficient Loading and Controlled Release of Benzophenone-3 Entrapped into Self-Assembling Nanogels.<br>Current Nanoscience, 2010, 6, 654-665.                                                                                     | 0.7 | 21        |
| 393 | Delivery of antisense oligonucleotides by means of pH-sensitive liposomes. Journal of Controlled<br>Release, 1997, 48, 179-184.                                                                                                   | 4.8 | 20        |
| 394 | Interfacial deposition of functionalized copolymers onto nanoemulsions produced by the solvent displacement method. Colloid and Polymer Science, 2001, 279, 784-792.                                                              | 1.0 | 20        |
| 395 | Antisense Oligonucleotide Nanocapsules Efficiently Inhibit EWS-Fli1 Expression in a Ewing's Sarcoma<br>Model. Oligonucleotides, 2006, 16, 158-168.                                                                                | 2.7 | 20        |
| 396 | A comprehensive study on the inclusion mechanism of benzophenone into supramolecular<br>nanoassemblies prepared using two water-soluble associative polymers. Journal of Thermal Analysis<br>and Calorimetry, 2009, 98, 57-64.    | 2.0 | 20        |

| #   | Article                                                                                                                                                                                                                               | IF    | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 397 | "Squalenoylcurcumin―Nanoassemblies as Waterâ€Dispersible Drug Candidates with Antileishmanial<br>Activity. ChemMedChem, 2015, 10, 411-418.                                                                                            | 1.6   | 20        |
| 398 | Colloidal properties of biodegradable nanoparticles influence interaction with amyloid-β peptide.<br>Journal of Biotechnology, 2011, 156, 338-340.                                                                                    | 1.9   | 19        |
| 399 | Synthesis and Cytotoxic Activity of Selfâ€Assembling Squalene Conjugates of<br>3â€[(Pyrrolâ€2â€yl)methylidene]â€2,3â€dihydroâ€1 <i>H</i> â€indolâ€2â€one Anticancer Agents. European Jourr<br>Organic Chemistry, 2015, 2015, 202-212. | nalæf | 19        |
| 400 | Desmoplastic Reaction in 3Dâ€Pancreatic Cancer Tissues Suppresses Molecular Permeability. Advanced<br>Healthcare Materials, 2017, 6, 1700057.                                                                                         | 3.9   | 19        |
| 401 | Preparation and characterization of biodegradable poly(isobutylcyano acrylate) nanoparticles with the surface modified by the adsorption of proteins. Colloids and Surfaces B: Biointerfaces, 1995, 4, 349-356.                       | 2.5   | 18        |
| 402 | Title is missing!. Journal of Nanoparticle Research, 2003, 5, 365-371.                                                                                                                                                                | 0.8   | 18        |
| 403 | Consequences of ions and pH on the supramolecular organization of sphingomyelin and sphingomyelin/cholesterol bilayers. Chemistry and Physics of Lipids, 2008, 153, 119-129.                                                          | 1.5   | 18        |
| 404 | Simultaneous use of size-exclusion chromatography and photon correlation spectroscopy for the characterization of poly(lactic acid) nanoparticles. Journal of Chromatography A, 1994, 675, 129-139.                                   | 1.8   | 17        |
| 405 | Cellular fate of oligonucleotides when delivered by nanocapsules of poly(isobutylcyanoacrylate).<br>Journal of Controlled Release, 2005, 106, 209-213.                                                                                | 4.8   | 17        |
| 406 | Busulfan loading into poly(alkyl cyanoacrylate) nanoparticles: Physico-chemistry and molecular<br>modeling. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 79B, 254-262.                               | 1.6   | 17        |
| 407 | Freeze-drying of squalenoylated nucleoside analogue nanoparticles. International Journal of Pharmaceutics, 2009, 381, 140-145.                                                                                                        | 2.6   | 17        |
| 408 | Supramolecular organization of S12363-liposomes prepared with two different remote loading processes. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 926-935.                                                              | 1.4   | 17        |
| 409 | In-vitro evaluation of filaricidal activity of GABA and 1,3-dipalmitoyl-2-(4-aminobutyryl)glycerol HCI: a diglyceride prodrug. Journal of Pharmacy and Pharmacology, 2011, 41, 191-193.                                               | 1.2   | 17        |
| 410 | New Formulation for the Delivery of Oligonucleotides Using "Clickable―<br>siRNA-Polyisoprenoid-Conjugated Nanoparticles: Application to Cancers Harboring Fusion Oncogenes.<br>Bioconjugate Chemistry, 2018, 29, 1961-1972.           | 1.8   | 17        |
| 411 | Preparation and Characterization of Biocompatible Chitosan Nanoparticles for Targeted Brain<br>Delivery of Peptides. Methods in Molecular Biology, 2018, 1727, 443-454.                                                               | 0.4   | 17        |
| 412 | Drug-Initiated Synthesis of Heterotelechelic Polymer Prodrug Nanoparticles for <i>in Vivo</i> Imaging and Cancer Cell Targeting. Biomacromolecules, 2019, 20, 2464-2476.                                                              | 2.6   | 17        |
| 413 | In VitroEvaluation of Nanoparticle Formulations Containing Gangliosides. Journal of Drug Targeting, 1994, 2, 53-59.                                                                                                                   | 2.1   | 16        |
| 414 | Study of the breakup under shear of a new thermally reversible water-in-oil-in-water (W/O/W) multiple emulsion. Pharmaceutical Research, 2001, 18, 689-693.                                                                           | 1.7   | 16        |

| #   | Article                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 415 | Sustained delivery of growth factors from methylidene malonate 2.1.2-based polymers. Biomaterials, 2006, 27, 2609-2620.                                                                             | 5.7 | 16        |
| 416 | siRNA nanoformulation against the Ret/PTC1 junction oncogene is efficient in an in vivo model of papillary thyroid carcinoma. Nucleic Acids Research, 2008, 36, 6944-6944.                          | 6.5 | 16        |
| 417 | Metabolism evaluation of biomimetic prodrugs by in vitro models and mass spectrometry.<br>International Journal of Pharmaceutics, 2009, 379, 235-243.                                               | 2.6 | 16        |
| 418 | A new nanomedicine based on didanosine glycerolipidic prodrug enhances the long term<br>accumulation of drug in a HIV sanctuary. International Journal of Pharmaceutics, 2011, 414, 285-297.        | 2.6 | 16        |
| 419 | Nanomedicine: From where are we coming and where are we going?. Journal of Controlled Release, 2019, 311-312, 319-321.                                                                              | 4.8 | 16        |
| 420 | Therapeutic Opportunities in Neuroblastoma Using Nanotechnology. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 625-635.                                                         | 1.3 | 16        |
| 421 | Retrovirus budding may constitute a port of entry for drug carriers. Biochimica Et Biophysica Acta -<br>Molecular Cell Research, 1996, 1310, 53-59.                                                 | 1.9 | 15        |
| 422 | Paraquat detoxication with multiple emulsions. International Journal of Pharmaceutics, 2009, 380, 142-146.                                                                                          | 2.6 | 15        |
| 423 | Squalene-Adenosine Nanoparticles: Ligands of Adenosine Receptors or Adenosine Prodrug?. Journal of<br>Pharmacology and Experimental Therapeutics, 2019, 369, 144-151.                               | 1.3 | 15        |
| 424 | Surface Pressure and Surface Potential Studies of Poly(Isobutylcyanoacrylate)-Ampicillin Interactions at the Water-Air Interface. Journal of Bioactive and Compatible Polymers, 1989, 4, 110-123.   | 0.8 | 14        |
| 425 | Strategies to Increase the Oral Bioavailability of Nucleoside Analogs. Current Medicinal Chemistry, 2009, 16, 1391-1399.                                                                            | 1.2 | 14        |
| 426 | Combined antitumoral therapy with nanoassemblies of bolaform polyisoprenoyl paclitaxel/gemcitabine prodrugs. Polymer Chemistry, 2014, 5, 1662-1673.                                                 | 1.9 | 14        |
| 427 | Preactivated Oxazaphosphorines Designed for Isophosphoramide Mustard Delivery as Bulk Form or<br>Nanoassemblies: Synthesis and Proof of Concept. Journal of Medicinal Chemistry, 2015, 58, 705-717. | 2.9 | 14        |
| 428 | Positively charged cyclodextrins as effective molecular transporters of active phosphorylated forms of gemcitabine into cancer cells. Scientific Reports, 2017, 7, 8353.                            | 1.6 | 14        |
| 429 | Capillary electrophoresis monitoring of the competitive adsorption of albumin onto the orosomucoid-coated polyisobutylcyanoacrylate nanoparticles. Electrophoresis, 1994, 15, 234-239.              | 1.3 | 13        |
| 430 | Influence of surface properties on the inflammatory response to polymeric nanoparticles.<br>Pharmaceutical Research, 1995, 12, 1385-1387.                                                           | 1.7 | 13        |
| 431 | In vitroandin vivoEvaluation of Poly(Methylidene Malonate 2.1.2) Microparticles Behavior for Oral<br>Administration. Journal of Drug Targeting, 2001, 9, 141-153.                                   | 2.1 | 13        |
| 432 | Cationic emulsions improves the delivery of oligonucleotides to leukemic P388/ADR cells in ascite.<br>Journal of Controlled Release, 2003, 89, 473-482.                                             | 4.8 | 13        |

| #   | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 433 | Interfacial rheology as a tool to study the potential of cyclodextrin polymers to stabilize oil–water interfaces. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 69, 475-479.                                                       | 1.6  | 13        |
| 434 | Preparation and Characterization of Biocompatible Chitosan Nanoparticles for Targeted Brain<br>Delivery of Peptides. Methods in Molecular Biology, 2012, 846, 321-332.                                                                               | 0.4  | 13        |
| 435 | Effects of siRNA on RET/PTC3 Junction Oncogene in Papillary Thyroid Carcinoma: From Molecular and Cellular Studies to Preclinical Investigations. PLoS ONE, 2014, 9, e95964.                                                                         | 1.1  | 13        |
| 436 | A unique multidrug nanomedicine made of squalenoyl-gemcitabine and alkyl-lysophospholipid edelfosine. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 144, 165-173.                                                                    | 2.0  | 13        |
| 437 | Preparation and in vivo studies of a new drug delivery system. Applied Biochemistry and Biotechnology, 1984, 10, 263-265.                                                                                                                            | 1.4  | 12        |
| 438 | N-methylation of anthracyclines modulates their cytotoxicity and pharmacokinetic in wild type and multidrug resistant cells. Biomedicine and Pharmacotherapy, 2003, 57, 301-308.                                                                     | 2.5  | 12        |
| 439 | Nanoparticles against Alzheimer's disease: PEG–PACA nanoparticles are able to link the aβ-peptide and influence its aggregation kinetic. Journal of Controlled Release, 2010, 148, e112-e113.                                                        | 4.8  | 12        |
| 440 | Les nitriles et les amides bromcrotoniques III action de la Nâ^1⁄4Bromsuccinimide sur les butènes-nitriles.<br>Bulletin Des Sociétés Chimiques Belges, 2010, 61, 253-260.                                                                            | 0.0  | 12        |
| 441 | Nanomedicines and stroke: Toward translational research. Journal of Drug Delivery Science and Technology, 2015, 30, 278-299.                                                                                                                         | 1.4  | 12        |
| 442 | A Self-Assembling NHC-Pd-Loaded Calixarene as a Potent Catalyst for the Suzuki-Miyaura<br>Cross-Coupling Reaction in Water. Molecules, 2020, 25, 1459.                                                                                               | 1.7  | 12        |
| 443 | (Poly-cyanoacrylate) nanomedicines for cancer and beyond: Lessons learned. Journal of Controlled Release, 2021, 334, 318-326.                                                                                                                        | 4.8  | 12        |
| 444 | Involvement of Macrophages in the Pathogenesis of Transmissible Spongiform Encephalopathies.<br>Autoimmunity, 2002, 9, 19-27.                                                                                                                        | 0.6  | 11        |
| 445 | Effect of nanoparticles binding ß-amyloid peptide on nitric oxide production by cultured endothelial cells and macrophages. International Journal of Nanomedicine, 2013, 8, 1335.                                                                    | 3.3  | 11        |
| 446 | Replenishing reservoirs in vivo. Nature Nanotechnology, 2014, 9, 874-875.                                                                                                                                                                            | 15.6 | 11        |
| 447 | Knocking Down TMPRSS2-ERG Fusion Oncogene by siRNA Could be an Alternative Treatment to Flutamide. Molecular Therapy - Nucleic Acids, 2016, 5, e301.                                                                                                 | 2.3  | 11        |
| 448 | Elongated self-assembled nanocarriers: From molecular organization to therapeutic applications.<br>Advanced Drug Delivery Reviews, 2021, 172, 127-147.                                                                                               | 6.6  | 11        |
| 449 | Polyisobutylcyanoacrylate nanoparticles as drug carriers: influence of sulfur dioxide on the physico-chemical characteristics of ciprofloxacin- and doxorubicin-loaded nanoparticles.<br>International Journal of Pharmaceutics, 1998, 166, 117-120. | 2.6  | 10        |
| 450 | Monolayer studies on poly(isobutylcyanoacrylate)-ampicillin association. Journal of Pharmacy and<br>Pharmacology, 2011, 39, 973-977.                                                                                                                 | 1.2  | 10        |

| #   | Article                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 451 | Influence of the nanoprecipitation conditions on the supramolecular structure of squalenoyled nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 96, 89-95.                  | 2.0 | 10        |
| 452 | Squalene versus cholesterol: Which is the best nanocarrier for the delivery to cells of the anticancer drug gemcitabine?. Comptes Rendus Chimie, 2018, 21, 974-986.                                    | 0.2 | 10        |
| 453 | Stacking as a Key Property for Creating Nanoparticles with Tunable Shape: The Case of Squalenoyl-Doxorubicin. ACS Nano, 2019, 13, 12870-12879.                                                         | 7.3 | 10        |
| 454 | Squalene-based nanoparticles for the targeting of atherosclerotic lesions. International Journal of Pharmaceutics, 2020, 581, 119282.                                                                  | 2.6 | 10        |
| 455 | A New Method to Isolate Polyalkylcyanoacrylate Nanoparticle Preparations. Journal of Drug<br>Targeting, 1995, 3, 167-169.                                                                              | 2.1 | 9         |
| 456 | Slow Delivery of the Selective Cholecystokinin Agonist pBC 264 into the Rat Nucleus Accumbens Using Microspheres. Journal of Neurochemistry, 2002, 67, 2417-2424.                                      | 2.1 | 9         |
| 457 | Lipid onjugation of Endogenous Neuropeptides: Improved Biotherapy against Human Pancreatic<br>Cancer. Advanced Healthcare Materials, 2015, 4, 1015-1022.                                               | 3.9 | 9         |
| 458 | PLGA-PEG-supported Pd Nanoparticles as Efficient Catalysts for Suzuki-Miyaura Coupling Reactions in Water. Chimia, 2016, 70, 252-257.                                                                  | 0.3 | 9         |
| 459 | Adenosine and lipids: A forced marriage or a love match?. Advanced Drug Delivery Reviews, 2019, 151-152, 233-244.                                                                                      | 6.6 | 9         |
| 460 | Albumin-driven disassembly of lipidic nanoparticles: the specific case of the squalene-adenosine nanodrug. Nanoscale, 2020, 12, 2793-2809.                                                             | 2.8 | 9         |
| 461 | Gemcitabine Lipid Prodrugs: The Key Role of the Lipid Moiety on the Self-Assembly into Nanoparticles.<br>Bioconjugate Chemistry, 2021, 32, 782-793.                                                    | 1.8 | 9         |
| 462 | Investigation of squalene-doxorubicin distribution and interactions within single cancer cell using<br>Raman microspectroscopy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 35, 102404. | 1.7 | 9         |
| 463 | Colloidal Carriers: A Promising Way to Treat Central Nervous System Diseases. Journal of Nanoneuroscience, 2009, 1, 17-34.                                                                             | 0.5 | 9         |
| 464 | Polymeric Nanoparticles as Drug Carriers. , 2006, , 101-110.                                                                                                                                           |     | 9         |
| 465 | Synthesis and aqueous organization of 1,3-dipalmitoyl-2-(4-aminobutyryl) glycerol·HCl: a diglyceride prodrug. Chemistry and Physics of Lipids, 1991, 59, 75-81.                                        | 1.5 | 8         |
| 466 | Propidium-iodide-loaded polyalkylcyanoacrylate particles ?labelling conditions and loading capacity.<br>Colloid and Polymer Science, 1991, 269, 147-152.                                               | 1.0 | 8         |
| 467 | Retroviral Inhibition by Antisense Oligonucleotides Determined by Intracellular Stability. Antisense<br>Research and Development, 1994, 4, 207-210.                                                    | 3.3 | 8         |
| 468 | Oral administration of peptides: Study of a glycerolipidic prodrug. International Journal of<br>Pharmaceutics, 1995, 115, 45-52.                                                                       | 2.6 | 8         |

| #   | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 469 | Analysis of Serum Proteins by Micellar Electrokinetic Capillary Chromatography. Application to a<br>Drug Carrier Evaluation. Journal of Liquid Chromatography and Related Technologies, 1996, 19,<br>3333-3353.                                               | 0.5 | 8         |
| 470 | Oral absorption and tissue distribution of a new squalenoyl anticancer nanomedicine. Journal of<br>Nanoparticle Research, 2008, 10, 887-891.                                                                                                                  | 0.8 | 8         |
| 471 | Biodegradable polymeric nanoformulation based on the antiprotozoal canthin-6-one. Journal of<br>Nanoparticle Research, 2011, 13, 6737-6746.                                                                                                                   | 0.8 | 8         |
| 472 | Quantification of trimesic acid in liver, spleen and urine by high-performance liquid chromatography coupled to a photodiode-array detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 2311-2314. | 1.2 | 8         |
| 473 | In vitro determination of the CYP 3A4 activity in rat hepatic microsomes by liquid-phase extraction and HPLC-photodiode array detection. Journal of Pharmacological and Toxicological Methods, 2012, 66, 29-34.                                               | 0.3 | 8         |
| 474 | The role of solvent swelling in the self-assembly of squalene based nanomedicines. Soft Matter, 2015, 11, 4173-4179.                                                                                                                                          | 1.2 | 8         |
| 475 | Synthesis of a deuterated probe for the confocal Raman microscopy imaging of squalenoyl nanomedicines. Beilstein Journal of Organic Chemistry, 2016, 12, 1127-1135.                                                                                           | 1.3 | 8         |
| 476 | Squalenoyl-gemcitabine/edelfosine nanoassemblies: Anticancer activity in pediatric cancer cells and pharmacokinetic profile in mice. International Journal of Pharmaceutics, 2020, 582, 119345.                                                               | 2.6 | 8         |
| 477 | Micro- and nanocarriers for pain alleviation. Advanced Drug Delivery Reviews, 2022, 187, 114359.                                                                                                                                                              | 6.6 | 8         |
| 478 | Theoretical and experimental study of beveled thyristor structures. Solid-State Electronics, 1979, 22, 967-971.                                                                                                                                               | 0.8 | 7         |
| 479 | Busulphan-loaded long-circulating nanospheres, a very attractive challenge for both galenists and pharmacologists. Journal of Microencapsulation, 2007, 24, 715-730.                                                                                          | 1.2 | 7         |
| 480 | Application of thermal analysis to the study of lipidic prodrug incorporation into nanocarriers.<br>Journal of Thermal Analysis and Calorimetry, 2009, 98, 65-71.                                                                                             | 2.0 | 7         |
| 481 | Combinatorial Nanomedicine Made of Squalenoyl-Gemcitabine and Edelfosine for the Treatment of Osteosarcoma. Cancers, 2020, 12, 1895.                                                                                                                          | 1.7 | 7         |
| 482 | Gemcitabine lipid prodrug nanoparticles: Switching the lipid moiety and changing the fate in the bloodstream. International Journal of Pharmaceutics, 2021, 609, 121076.                                                                                      | 2.6 | 7         |
| 483 | Design, Preparation and Characterization of Modular Squalene-based Nanosystems for Controlled<br>Drug Release. Current Topics in Medicinal Chemistry, 2017, 17, .                                                                                             | 1.0 | 7         |
| 484 | Pharmacological manipulation of early PrPres accumulation in the spleen of scrapie-infected mice. , 2000, , 39-56.                                                                                                                                            |     | 7         |
| 485 | The use of poly (isobutyl cyanoacrylate) nanoparticles with selected antifungal drugs. FEMS<br>Microbiology Letters, 1987, 44, 413-416.                                                                                                                       | 0.7 | 6         |
| 486 | In vivo fate and immune pulmonary response after nasal administration of microspheres loaded with phosphorylcholine-thyroglobulin. International Journal of Pharmaceutics, 1999, 183, 73-79.                                                                  | 2.6 | 6         |

4

| #   | Article                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 487 | Amphiphilic derivatives of dextran and related nanoparticles. Polymer Science - Series A, 2007, 49, 708-715.                                                                       | 0.4 | 6         |
| 488 | Atomic pair distribution function (PDF) study of iron oxide nanoparticles in aqueous suspension.<br>Journal of Materials Chemistry, 2009, 19, 6354.                                | 6.7 | 6         |
| 489 | Interfacial behavior of PEGylated lipids and their effect on the stability of squalenoyl-drug nanoassemblies. International Journal of Pharmaceutics, 2014, 471, 75-82.            | 2.6 | 6         |
| 490 | InÂvitro investigation of multidrug nanoparticles for combined therapy with gemcitabine and a tyrosine kinase inhibitor: Together is not better. Biochimie, 2016, 130, 4-13.       | 1.3 | 6         |
| 491 | Synthesis and Biopharmaceutical Characterization of Amphiphilic Squalenyl Derivative Based Versatile<br>Drug Delivery Platform. Frontiers in Chemistry, 2020, 8, 584242.           | 1.8 | 6         |
| 492 | New Poly(Methylidene Malonate 2.1.2) Nanoparticles: Recent Developments. , 1994, , 161-172.                                                                                        |     | 6         |
| 493 | Inhibition of the Friend Retrovirus by Antisense Oligonucleotides Annals of the New York Academy of Sciences, 1992, 660, 334-335.                                                  | 1.8 | 5         |
| 494 | Biocompatible poly(methylidene malonate)-made materials for pharmaceutical and biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 68, 479-495. | 2.0 | 5         |
| 495 | Nanoencapsulation of antiviral nucleotide analogs. Journal of Drug Delivery Science and Technology, 2009, 19, 385-390.                                                             | 1.4 | 5         |
| 496 | Swelling of a Sponge Lipid Phase via Incorporation of a Nonionic Amphiphile: SANS and SAXS Studies. , 2011, , 1-6.                                                                 |     | 5         |
| 497 | Turning Squalene into Cationic Lipid Allows a Delivery of siRNA in Cultured Cells. Nucleic Acid<br>Therapeutics, 2015, 25, 121-129.                                                | 2.0 | 5         |
| 498 | Decoration of Squalenoylâ€Gemcitabine Nanoparticles with Squalenylâ€Hydroxybisphosphonate for the<br>Treatment of Bone Tumors. ChemMedChem, 2021, 16, 3730-3738.                   | 1.6 | 5         |
| 499 | Nanocapsules: Preparation, Characterization and Therapeutic Applications. , 2006, , 255-276.                                                                                       |     | 5         |
| 500 | Comparative cell uptake of propidium iodide associated with liposomes or nanoparticles. , 1987, 33, 397-405.                                                                       |     | 5         |
| 501 | Quantitative study of the interaction between polybutylcyanoacrylate nanoparticles and mouse peritoneal macrophages in culture. Journal De Pharmacie De Belgique, 1983, 38, 130-4. | 0.2 | 5         |
| 502 | Preparation and evaluation of alpha-phenyl-n-tert-butyl nitrone (PBN)-encapsulated chitosan and<br>PEGylated chitosan nanoparticles. Die Pharmazie, 2009, 64, 436-9.               | 0.3 | 5         |
| 503 | Nanomedicines and cell-based therapies for embryonal tumors of the nervous system. Journal of Controlled Release, 2022, 348, 553-571.                                              | 4.8 | 5         |
|     |                                                                                                                                                                                    |     |           |

504 Porous Metal–Organic Frameworks as New Drug Carriers. , 2011, , 559-573.

| #   | Article                                                                                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 505 | Quantification of tetramethyl-terephthalic acid in rat liver, spleen and urine matrices by liquid–liquid<br>phase extraction and HPLC-photodiode array detection. Journal of Pharmaceutical and Biomedical<br>Analysis, 2012, 67-68, 98-103.                                                                                                 | 1.4  | 4         |
| 506 | Selective modification of a native protein in a patient tissue homogenate using palladium nanoparticles. Chemical Communications, 2019, 55, 15121-15124.                                                                                                                                                                                     | 2.2  | 4         |
| 507 | When drug nanocarriers miss their target: extracellular diffusion and cell uptake are not enough to be effective. Biomaterials Science, 2021, 9, 5407-5414.                                                                                                                                                                                  | 2.6  | 4         |
| 508 | Development of Novel Technologies for the Synthesis of Biodegradable Pegylated Nanoparticles. ,<br>1998, , 225-239.                                                                                                                                                                                                                          |      | 4         |
| 509 | Adsorption of Allergen Extracts onto Colloidal Particles. Journal of Colloid and Interface Science, 1994, 166, 294-301.                                                                                                                                                                                                                      | 5.0  | 3         |
| 510 | Simultaneous quantification of preactivated ifosfamide derivatives and of 4-hydroxyifosfamide by high performance liquid chromatography–tandem mass spectrometry in mouse plasma and its application to a pharmacokinetic study. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 992, 30-35. | 1.2  | 3         |
| 511 | Supramolecular organization and biological interaction of squalenoyl siRNA nanoparticles.<br>International Journal of Pharmaceutics, 2021, 609, 121117.                                                                                                                                                                                      | 2.6  | 3         |
| 512 | pH Sensitive Liposomes as Efficient Carriers for Intracellular Delivery of Oligonucleotides. , 1996, ,<br>151-162.                                                                                                                                                                                                                           |      | 3         |
| 513 | Nanoparticles: Blood Components Interactions. , 2014, , 1-10.                                                                                                                                                                                                                                                                                |      | 3         |
| 514 | Formulation of Didanosine Prodrugs into PEGylated Poly(alkyl cyanoacrylate) Nanoparticles and<br>Uptake by Brain Endothelial Cells. Journal of Nanoneuroscience, 2009, 1, 174-183.                                                                                                                                                           | 0.5  | 3         |
| 515 | Polymeric Micro- and Nanoparticles as Drug Carriers. , 2001, , .                                                                                                                                                                                                                                                                             |      | 2         |
| 516 | Oil/water "hand-bag like structures― how interfacial rheology can help to understand their formation?. Journal of Drug Delivery Science and Technology, 2005, 15, 3-9.                                                                                                                                                                       | 1.4  | 2         |
| 517 | Development of micro- and nanosystems for drug delivery. Russian Journal of General Chemistry, 2008, 78, 2220-2229.                                                                                                                                                                                                                          | 0.3  | 2         |
| 518 | Formulation of glycerolipidic prodrugs into PEGylated liposomes for brain delivery. Journal of Drug<br>Delivery Science and Technology, 2009, 19, 61-66.                                                                                                                                                                                     | 1.4  | 2         |
| 519 | X-ray microfluorescence for biodistribution studies of nanomedicines. International Journal of Pharmaceutics, 2017, 531, 343-349.                                                                                                                                                                                                            | 2.6  | 2         |
| 520 | Ultrasound-triggered pain relief. Nature Biomedical Engineering, 2017, 1, 625-626.                                                                                                                                                                                                                                                           | 11.6 | 2         |
| 521 | Targetable Nanoparticles. , 1986, , 147-164.                                                                                                                                                                                                                                                                                                 |      | 2         |
| 522 | Therapeutic Aspects of Liposomes. , 1990, , 133-165.                                                                                                                                                                                                                                                                                         |      | 2         |

| #   | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 523 | Squalenoylation: A Novel Technology for Anticancer and Antibiotic Drugs with Enhanced Activity. ,<br>2016, , 253-272.                                                                                                      |     | 2         |
| 524 | Preparation and In Vivo Studies of a New Drug Delivery System. , 1984, , 263-265.                                                                                                                                          |     | 2         |
| 525 | Avalanche multiplication factor and reverse current of Si p-n junctions. Physica Status Solidi A, 1976, 38, 123-129.                                                                                                       | 1.7 | 1         |
| 526 | Liposomes their fate in vivo and their possible therapeutic use (1.V. route). Efficiency of<br>liposome-entrapped ATP in cerebral ischemia. Phosphorus, Sulfur and Silicon and the Related<br>Elements, 1993, 77, 109-112. | 0.8 | 1         |
| 527 | Nanoparticles for the Delivery of Peptides and Proteins. , 1994, , 153-159.                                                                                                                                                |     | 1         |
| 528 | Doxorubicin-loaded nanoparticles shows increased cytotoxicity efficacy agains hepatocellular carcinoma cells in vitro and in vivo. Journal of Hepatology, 2002, 36, 82.                                                    | 1.8 | 1         |
| 529 | Biodistribution and anticancer activity of a newvincaalkaloid encapsulated into long-circulating liposomes. Journal of Liposome Research, 2010, 20, 62-72.                                                                 | 1.5 | 1         |
| 530 | Lipid-Based Anticancer Prodrugs. , 2010, , 291-328.                                                                                                                                                                        |     | 1         |
| 531 | Nanomaterials: Applications in Drug Delivery. , 2013, , 131-151.                                                                                                                                                           |     | 1         |
| 532 | The Drug-Initiated Method: A Convenient Approach for the Synthesis of Efficient Polymer Prodrug Nanoparticles. ACS Symposium Series, 2015, , 257-272.                                                                      | 0.5 | 1         |
| 533 | Poly-isoprenylated ifosfamide analogs: Preactivated antitumor agents as free formulation or nanoassemblies. International Journal of Pharmaceutics, 2017, 532, 748-756.                                                    | 2.6 | 1         |
| 534 | Poly(Alkylcyanoacrylates). Surfactant Science, 2003, , .                                                                                                                                                                   | 0.0 | 1         |
| 535 | SC16 stimulation of the mucosal immune response by a thyroglobulin-phosphorylcholine conjugate entrapped in PLA-GA microspheres. European Journal of Pharmaceutical Sciences, 1994, 2, 94.                                 | 1.9 | 0         |
| 536 | Antisense oligonucleotides in cancerology. European Journal of Cancer, 1997, 33, S219.                                                                                                                                     | 1.3 | 0         |
| 537 | Phospholipid/triglyceride mixtures: analysis and comparison of the solubilisation profiles. , 2004, , 139-142.                                                                                                             |     | 0         |
| 538 | Solubility of triacylglycerols or stearylamine in phospholipid vesicles. , 2004, , 6-13.                                                                                                                                   |     | 0         |
| 539 | Dossier: Drug delivery and drug efficacy. Biomedicine and Pharmacotherapy, 2004, 58, 141.                                                                                                                                  | 2.5 | 0         |
| 540 | Special JDDST issue in honour of Prof. Dominique Duchêne. Journal of Drug Delivery Science and Technology, 2015, 30, 251-259.                                                                                              | 1.4 | 0         |

IF # ARTICLE CITATIONS Trends in the development of oral anticoagulants. Therapeutic Delivery, 2015, 6, 685-703. 541 New Enkephalin Nanomedicines for Pain Alleviation, Overcoming the Side Effects of Morphine. , 2021, , 191-212. 542 0 Biology and the Environment., 2007,, 695-715. 543 La « squalénisation » : un exemple de conception de nanomédicaments anticancéreux et antiviraux. Bulletin De L'Academie Nationale De Medecine, 2009, 193, 663-674. 544 0.0 0 Poly (Alkylcyanoacrylates)., 1998,,. 545

**P** COUVREUR