C G Goodnow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/141817/publications.pdf

Version: 2024-02-01

3151 3102 38,038 305 92 187 citations h-index g-index papers 325 325 325 32583 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Uncontrolled CD21low age-associated and B1 B cell accumulation caused by failure of an EGR2/3 tolerance checkpoint. Cell Reports, 2022, 38, 110259.	2.9	15
2	Augmented neutralization of SARS oVâ€⊋ Omicron variant by boost vaccination and monoclonal antibodies. European Journal of Immunology, 2022, 52, 970-977.	1.6	10
3	STAT5B restrains human B-cell differentiation to maintain humoral immune homeostasis. Journal of Allergy and Clinical Immunology, 2022, 150, 931-946.	1.5	19
4	Activation of the viral sensor oligoadenylate synthetase 2 (Oas2) prevents pregnancy-driven mammary cancer metastases. Breast Cancer Research, 2022, 24, 31.	2.2	6
5	Platform for isolation and characterization of SARS-CoV-2 variants enables rapid characterization of Omicron in Australia. Nature Microbiology, 2022, 7, 896-908.	5.9	32
6	SATB1 ensures appropriate transcriptional programs within na \tilde{A} -ve CD8 $<$ sup $>+sup> T cells. Immunology and Cell Biology, 2022, 100, 636-652.$	1.0	3
7	Genetic and structural basis of the human anti- \hat{l} ±-galactosyl antibody response. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3. 3	5
8	Loss of hnRNPLLâ€dependent splicing of Ptprc has no impact on Bâ€cell development, activation and terminal differentiation into antibodyâ€secreting cells. Immunology and Cell Biology, 2021, 99, 532-541.	1.0	7
9	COVIDâ€19, varying genetic resistance to viral disease and immune tolerance checkpoints. Immunology and Cell Biology, 2021, 99, 177-191.	1.0	10
10	Potent SARS-CoV-2 binding and neutralization through maturation of iconic SARS-CoV-1 antibodies. MAbs, 2021, 13, 1922134.	2.6	22
11	NINJ1 mediates plasma membrane rupture during lytic cell death. Nature, 2021, 591, 131-136.	13.7	352
12	Calling differentially methylated regions from whole genome bisulphite sequencing with DMRcate. Nucleic Acids Research, 2021, 49, e109-e109.	6.5	31
13	A Point Mutation in IKAROS ZF1 Causes a B Cell Deficiency in Mice. Journal of Immunology, 2021, 206, 1505-1514.	0.4	2
14	Loss-of-function of Fbxo10, encoding a post-translational regulator of BCL2 in lymphomas, has no discernible effect on BCL2 or B lymphocyte accumulation in mice. PLoS ONE, 2021, 16, e0237830.	1.1	2
15	Antigen-driven EGR2 expression is required for exhausted CD8+ T cell stability and maintenance. Nature Communications, 2021, 12, 2782.	5.8	20
16	Human transitional and IgM low mature naÃ⁻ve B cells preserve permissive Bâ€cell receptors. Immunology and Cell Biology, 2021, 99, 865-878.	1.0	4
17	SAMD9L autoinflammatory or ataxia pancytopenia disease mutations activate cell-autonomous translational repression. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	17
18	DOCK8 deficiency diminishes thymic Tâ€regulatory cell development but not thymic deletion. Clinical and Translational Immunology, 2021, 10, e1236.	1.7	6

#	Article	IF	CITATIONS
19	$\langle i \rangle$ Nfkb2 $\langle i \rangle$ variants reveal a p100-degradation threshold that defines autoimmune susceptibility. Journal of Experimental Medicine, 2021, 218, .	4.2	16
20	Immunizations with diverse sarbecovirus receptor-binding domains elicit SARS-CoV-2 neutralizing antibodies against a conserved site of vulnerability. Immunity, 2021, 54, 2908-2921.e6.	6.6	35
21	Activated $PI3Kl^2$ breaches multiple B cell tolerance checkpoints and causes autoantibody production. Journal of Experimental Medicine, 2020, 217, .	4.2	33
22	Conformational diversity facilitates antibody mutation trajectories and discrimination between foreign and self-antigens. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22341-22350.	3.3	15
23	Lymphoma Driver Mutations in the Pathogenic Evolution of an Iconic Human Autoantibody. Cell, 2020, 180, 878-894.e19.	13.5	82
24	Preponderance of CTLA4 Variation Associated With Autosomal Dominant Immune Dysregulation in the MYPPPY Motif. Frontiers in Immunology, 2019, 10, 1544.	2.2	14
25	High-throughput targeted long-read single cell sequencing reveals the clonal and transcriptional landscape of lymphocytes. Nature Communications, 2019, 10, 3120.	5.8	202
26	Clonal redemption and clonal anergy as mechanisms to balance B cell tolerance and immunity. Immunological Reviews, 2019, 292, 61-75.	2.8	52
27	IRF2 transcriptionally induces <i>GSDMD</i> expression for pyroptosis. Science Signaling, 2019, 12, .	1.6	120
28	CARD11 is dispensable for homeostatic responses and suppressive activity of peripherally induced FOXP3 + regulatory T cells. Immunology and Cell Biology, 2019, 97, 740-752.	1.0	10
29	Deletion of self-reactive CCR7– thymocytes in the absence of MHC expression on thymic epithelial cells. Cell Death and Differentiation, 2019, 26, 2727-2739.	5.0	8
30	B cell–intrinsic requirement for STK4 in humoral immunity in mice and human subjects. Journal of Allergy and Clinical Immunology, 2019, 143, 2302-2305.	1.5	21
31	DNA Hypermethylation Encroachment at CpG Island Borders in Cancer Is Predisposed by H3K4 Monomethylation Patterns. Cancer Cell, 2019, 35, 297-314.e8.	7.7	62
32	Oligoclonal lymphocytosis and cytokine derangement in a case of severe adverse drug reaction. Pathology, 2019, 51, S131.	0.3	1
33	241â€Single cell genomics of self-reactive B cells reveals the evolution from benign to pathogenic autoantibody and strategies for early diagnosis and personalised treatment. , 2019, , .		0
34	A divergent transcriptional landscape underpins the development and functional branching of MAIT cells. Science Immunology, 2019, 4, .	5.6	75
35	Denisovan, modern human and mouse TNFAIP3 alleles tune A20 phosphorylation and immunity. Nature Immunology, 2019, 20, 1299-1310.	7.0	53
36	STAT3 regulates cytotoxicity of human CD57+ CD4+ T cells in blood and lymphoid follicles. Scientific Reports, 2018, 8, 3529.	1.6	29

#	Article	IF	Citations
37	B-cell receptor reconstruction from single-cell RNA-seq with VDJPuzzle. Bioinformatics, 2018, 34, 2846-2847.	1.8	87
38	Germinal center antibody mutation trajectories are determined by rapid self/foreign discrimination. Science, 2018, 360, 223-226.	6.0	122
39	Indirect presentation in the thymus limits naive and regulatory Tâ€cell differentiation by promoting deletion of selfâ€reactive thymocytes. Immunology, 2018, 154, 522-532.	2.0	12
40	Molecular Profiling and Clonal Tracking of Secreted Rheumatoid Factors in Primary Sjögren's Syndrome. Arthritis and Rheumatology, 2018, 70, 1617-1625.	2.9	21
41	P1.04-11 Exploring the Germ-Line Contribution to Exceptional Response to PD-1/PD-L1 Inhibition in Patients with NSCLC by Whole Genome Sequencing. Journal of Thoracic Oncology, 2018, 13, S529.	0.5	0
42	Sequencing and Affinity Determination of Antigen-Specific B Lymphocytes from Peripheral Blood. Methods in Molecular Biology, 2018, 1827, 287-309.	0.4	2
43	The Ubiquitin Ligase Adaptor NDFIP1 Selectively Enforces a CD8+ T Cell Tolerance Checkpoint to High-Dose Antigen. Cell Reports, 2018, 24, 577-584.	2.9	8
44	î±Î² Tâ€eell receptors with a central <scp>CDR</scp> 3 cysteine are enriched in <scp>CD</scp> 8αα intraepithelial lymphocytes and their thymic precursors. Immunology and Cell Biology, 2018, 96, 553-561.	1.0	30
45	Understanding Immune Tolerance of Cancer: Reâ€Purposing Insights from Fetal Allografts and Microbes. BioEssays, 2018, 40, e1800050.	1.2	8
46	Abstract LB-121: Exploring the germ-line contribution to exceptional response to PD-1/PD-L1 inhibition in patients with metastatic non-small-cell lung cancer by whole genome sequencing. , 2018, , .		0
47	Murine LRBA deficiency causes CTLAâ€4 deficiency in Tregs without progression to immune dysregulation. Immunology and Cell Biology, 2017, 95, 775-788.	1.0	31
48	Systems-guided forward genetic screen reveals a critical role of the replication stress response protein ETAA1 in T cell clonal expansion. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5216-E5225.	3.3	18
49	IL-2 prevents deletion of developing T-regulatory cells in the thymus. Cell Death and Differentiation, 2017, 24, 1007-1016.	5.0	11
50	Up-regulation of LFA-1 allows liver-resident memory T cells to patrol and remain in the hepatic sinusoids. Science Immunology, 2017, 2, .	5.6	138
51	Synergistic cooperation and crosstalk between <i>MYD88L265P</i> and mutations that dysregulate CD79B and surface IgM. Journal of Experimental Medicine, 2017, 214, 2759-2776.	4.2	38
52	Dedicator of cytokinesis 8–deficient CD4 + TÂcells are biased to a T H 2 effector fate at the expense of T H 1 and T H 17Âcells. Journal of Allergy and Clinical Immunology, 2017, 139, 933-949.	1.5	69
53	Structural basis of antigen recognition: crystal structure of duck egg lysozyme. Acta Crystallographica Section D: Structural Biology, 2017, 73, 910-920.	1.1	5
54	A mutation in the viral sensor 2'-5'-oligoadenylate synthetase 2 causes failure of lactation. PLoS Genetics, 2017, 13, e1007072.	1.5	21

#	Article	IF	Citations
55	TCR transgenic mice reveal the impact of type 1 diabetes loci on early and late disease checkpoints. Immunology and Cell Biology, 2016, 94, 709-713.	1.0	4
56	A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage. Nature Immunology, 2016, 17, 1300-1311.	7.0	288
57	Inhibiting TLR9 and other UNC93B1-dependent TLRs paradoxically increases accumulation of MYD88L265P plasmablasts in vivo. Blood, 2016, 128, 1604-1608.	0.6	10
58	A Novel Mutation in Nucleoporin 35 Causes Murine Degenerative Colonic Smooth Muscle Myopathy. American Journal of Pathology, 2016, 186, 2254-2261.	1.9	10
59	CD45-mediated control of TCR tuning in na \tilde{A} -ve and memory CD8+ T cells. Nature Communications, 2016, 7, 13373.	5.8	44
60	lgD attenuates the IgM-induced anergy response in transitional and mature B cells. Nature Communications, 2016, 7, 13381.	5.8	68
61	Clonal redemption of autoantibodies by somatic hypermutation away from self-reactivity during human immunization. Journal of Experimental Medicine, 2016, 213, 1255-1265.	4.2	132
62	Genetic predisposition for beta cell fragility underlies type 1 and type 2 diabetes. Nature Genetics, 2016, 48, 519-527.	9.4	117
63	A timeline demarcating two waves of clonal deletion and Foxp3 upregulation during thymocyte development. Immunology and Cell Biology, 2016, 94, 357-366.	1.0	17
64	A DOCK8-WIP-WASp complex links T cell receptors to the actin cytoskeleton. Journal of Clinical Investigation, 2016, 126, 3837-3851.	3.9	93
65	Heterogeneity of Human Neutrophil CD177 Expression Results from CD177P1 Pseudogene Conversion. PLoS Genetics, 2016, 12, e1006067.	1.5	36
66	DeepSNVMiner: a sequence analysis tool to detect emergent, rare mutations in subsets of cell populations. Peerl, 2016, 4, e2074.	0.9	23
67	Omenn syndrome associated with a functional reversion due to a somatic second-site mutation in CARD11 deficiency. Blood, 2015, 126, 1658-1669.	0.6	37
68	A deleterious RNF43 germline mutation in a severely affected serrated polyposis kindred. Human Genome Variation, 2015, 2, 15013.	0.4	46
69	Novel and rare functional genomic variants in multiple autoimmune syndrome and Sjögren's syndrome. Journal of Translational Medicine, 2015, 13, 173.	1.8	30
70	Attenuation of AMPK signaling by ROQUIN promotes T follicular helper cell formation. ELife, 2015, 4, .	2.8	52
71	Reliably Detecting Clinically Important Variants Requires Both Combined Variant Calls and Optimized Filtering Strategies. PLoS ONE, 2015, 10, e0143199.	1.1	38
72	Comparison of predicted and actual consequences of missense mutations. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5189-98.	3.3	200

#	Article	IF	Citations
73	Phosphorylation and linear ubiquitin direct A20 inhibition of inflammation. Nature, 2015, 528, 370-375.	13.7	227
74	T Cell Expansion Is the Limiting Factor of Virus Control in Mice with Attenuated TCR Signaling: Implications for Human Immunodeficiency. Journal of Immunology, 2015, 194, 2725-2734.	0.4	6
75	Quantitative Reduction of the TCR Adapter Protein SLP-76 Unbalances Immunity and Immune Regulation. Journal of Immunology, 2015, 194, 2587-2595.	0.4	28
76	Delayed control of herpes simplex virus infection and impaired CD4 + T ell migration to the skin in mouse models of DOCK8 deficiency. Immunology and Cell Biology, 2015, 93, 517-521.	1.0	16
77	Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers. Journal of Experimental Medicine, 2015, 212, 1095-1108.	4.2	348
78	LRGUK-1 Is Required for Basal Body and Manchette Function during Spermatogenesis and Male Fertility. PLoS Genetics, 2015, 11, e1005090.	1.5	59
79	Reducing the search space for causal genetic variants with VASP. Bioinformatics, 2015, 31, 2377-2379.	1.8	17
80	SnapShot: Interactions between B Cells and T Cells. Cell, 2015, 162, 926-926.e1.	13.5	25
81	Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature, 2015, 526, 666-671.	13.7	2,622
82	Candidate gene discovery in autoimmunity by using extreme phenotypes, next generation sequencing and whole exome capture. Autoimmunity Reviews, 2015, 14, 204-209.	2.5	29
83	HENMT1 and piRNA Stability Are Required for Adult Male Germ Cell Transposon Repression and to Define the Spermatogenic Program in the Mouse. PLoS Genetics, 2015, 11, e1005620.	1.5	95
84	Nextâ€generation sequencing to dissect hereditary nephrotic syndrome in mice identifies a hypomorphic mutation in <i>Lamb2</i>) and models Pierson's syndrome. Journal of Pathology, 2014, 233, 18-26.	2.1	5
85	Consequences of the recurrent <i>MYD88L265P</i> somatic mutation for B cell tolerance. Journal of Experimental Medicine, 2014, 211, 413-426.	4.2	81
86	Redemption of autoantibodies on anergic B cells by variable-region glycosylation and mutation away from self-reactivity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2567-75.	3.3	208
87	The RNA-binding protein hnRNPLL induces a T cell alternative splicing program delineated by differential intron retention in polyadenylated RNA. Genome Biology, 2014, 15, R26.	13.9	48
88	Zinc-finger protein ZFP318 is essential for expression of IgD, the alternatively spliced <i>Igh</i> product made by mature B lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4513-4518.	3.3	50
89	Ndfip1 mediates peripheral tolerance to self and exogenous antigen by inducing cell cycle exit in responding CD4 ⁺ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2067-2074.	3.3	25
90	A <scp>ZAP</scp> â€₹0 kinase domain variant prevents thymocyteâ€positive selection despite signalling <scp>CD</scp> 69 induction. Immunology, 2014, 141, 587-595.	2.0	4

#	Article	IF	Citations
91	Brief Report: Identification of a Pathogenic Variant in TREX1 in Earlyâ€Onset Cerebral Systemic Lupus Erythematosus by Wholeâ€Exome Sequencing. Arthritis and Rheumatology, 2014, 66, 3382-3386.	2.9	61
92	Autosomal-dominant B-cell deficiency with alopecia due to a mutation in NFKB2 that results in nonprocessable p100. Blood, 2014, 124, 2964-2972.	0.6	99
93	Zinc finger protein Zfp335 is required for the formation of the na \tilde{A} ve T cell compartment. ELife, 2014, 3, .	2.8	22
94	Genetics of Disease Progression in Diffuse Large B-Cell Lymphoma: Clonal Selection and Acquisition of Newly Acquired Somatic Mutations at Relapse. Blood, 2014, 124, 3038-3038.	0.6	0
95	Roquin-2 Shares Functions with Its Paralog Roquin-1 in the Repression of mRNAs Controlling T Follicular Helper Cells and Systemic Inflammation. Immunity, 2013, 38, 669-680.	6.6	120
96	Understanding the immunological impact of the human mutation explosion. Trends in Immunology, 2013, 34, 99-106.	2.9	13
97	B cell survival, surface BCR and BAFFR expression, CD74 metabolism, and CD8â ⁻ dendritic cells require the intramembrane endopeptidase SPPL2A. Journal of Experimental Medicine, 2013, 210, 31-40.	4.2	74
98	Unlocking the Bottleneck in Forward Genetics Using Whole-Genome Sequencing and Identity by Descent to Isolate Causative Mutations. PLoS Genetics, 2013, 9, e1003219.	1.5	44
99	RBM5 Is a Male Germ Cell Splicing Factor and Is Required for Spermatid Differentiation and Male Fertility. PLoS Genetics, 2013, 9, e1003628.	1.5	68
100	Heterozygous mis-sense mutations in Prkcb as a critical determinant of anti-polysaccharide antibody formation. Genes and Immunity, 2013, 14, 223-233.	2.2	5
101	Helios marks strongly autoreactive CD4+ T cells in two major waves of thymic deletion distinguished by induction of PD-1 or NF-ΰB. Journal of Experimental Medicine, 2013, 210, 269-285.	4.2	143
102	DOCK8 is critical for the survival and function of NKT cells. Blood, 2013, 122, 2052-2061.	0.6	68
103	A Missense Mutation in the Transcription Factor ETV5 Leads to Sterility, Increased Embryonic and Perinatal Death, Postnatal Growth Restriction, Renal Asymmetry and Polydactyly in the Mouse. PLoS ONE, 2013, 8, e77311.	1.1	11
104	Rasgrp1 mutation increases na \tilde{A} -ve T-cell CD44 expression and drives mTOR-dependent accumulation of Helios+ T cells and autoantibodies. ELife, 2013, 2, e01020.	2.8	45
105	An Essential Role for Katanin p80 and Microtubule Severing in Male Gamete Production. PLoS Genetics, 2012, 8, e1002698.	1.5	89
106	RAB-Like 2 Has an Essential Role in Male Fertility, Sperm Intra-Flagellar Transport, and Tail Assembly. PLoS Genetics, 2012, 8, e1002969.	1.5	72
107	ZBTB7B (Th-POK) Regulates the Development of IL-17–Producing CD1d-Restricted Mouse NKT Cells. Journal of Immunology, 2012, 189, 5240-5249.	0.4	37
108	Human lymphoma mutations reveal CARD11 as the switch between self-antigen–induced B cell death or proliferation and autoantibody production. Journal of Experimental Medicine, 2012, 209, 1907-1917.	4.2	38

#	Article	IF	CITATIONS
109	IL-10+CTLA-4+ Th2 Inhibitory Cells Form in a Foxp3-Independent, IL-2–Dependent Manner from Th2 Effectors during Chronic Inflammation. Journal of Immunology, 2012, 188, 5478-5488.	0.4	17
110	Finding new immune regulatory genes by ENU mutagenesis. Journal of Translational Medicine, 2012, 10,	1.8	0
111	Massively parallel sequencing of the mouse exome to accurately identify rare, induced mutations: an immediate source for thousands of new mouse models. Open Biology, 2012, 2, 120061.	1.5	88
112	Decreased T-cell receptor signaling through CARD11 differentially compromises forkhead box protein 3–positive regulatory versus TH2 effector cells to cause allergy. Journal of Allergy and Clinical Immunology, 2011, 127, 1277-1285.e5.	1.5	59
113	Differential Requirement for the CD45 Splicing Regulator hnRNPLL for Accumulation of NKT and Conventional T Cells. PLoS ONE, 2011, 6, e26440.	1.1	9
114	Aire regulates the transfer of antigen from mTECs to dendritic cells for induction of thymic tolerance. Blood, 2011, 118, 2462-2472.	0.6	174
115	Foxp3+ regulatory T cells exert asymmetric control over murine helper responses by inducing Th2 cell apoptosis. Blood, 2011, 118, 1845-1853.	0.6	49
116	ATP11C is critical for the internalization of phosphatidylserine and differentiation of B lymphocytes. Nature Immunology, 2011, 12, 441-449.	7.0	117
117	Cooperation between somatic Ikaros and Notch1 mutations at the inception of T-ALL. Leukemia Research, 2011, 35, 1512-1519.	0.4	2
118	How host defense is encoded in the mammalian genome. Mammalian Genome, 2011, 22, 1-5.	1.0	8
119	Visualizing the Role of Cbl-b in Control of Islet-Reactive CD4 T Cells and Susceptibility to Type 1 Diabetes. Journal of Immunology, 2011, 186, 2024-2032.	0.4	18
120	Anti-Islet Autoantibodies Trigger Autoimmune Diabetes in the Presence of an Increased Frequency of Islet-Reactive CD4 T Cells. Diabetes, 2011, 60, 2102-2111.	0.3	54
121	DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice. Journal of Experimental Medicine, 2011, 208, 2305-2320.	4.2	175
122	CD83 increases MHC II and CD86 on dendritic cells by opposing IL-10–driven MARCH1-mediated ubiquitination and degradation. Journal of Experimental Medicine, 2011, 208, 149-165.	4.2	183
123	CD45-Csk Phosphatase-Kinase Titration Uncouples Basal and Inducible T Cell Receptor Signaling during Thymic Development. Immunity, 2010, 32, 342-354.	6.6	78
124	Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus. Arthritis and Rheumatism, 2010, 62, 234-244.	6.7	593
125	T cells and follicular dendritic cells in germinal center Bâ€cell formation and selection. Immunological Reviews, 2010, 237, 72-89.	2.8	252
126	The ROQUIN family of proteins localizes to stress granules via the ROQ domain and binds target mRNAs. FEBS Journal, 2010, 277, 2109-2127.	2.2	69

#	Article	IF	Citations
127	Mouse strains with point mutations in TAP1 and TAP2. Immunology and Cell Biology, 2010, 88, 72-78.	1.0	9
128	Control systems and decision making for antibody production. Nature Immunology, 2010, 11, 681-688.	7.0	355
129	The Essential Role of DOCK8 in Humoral Immunity. Disease Markers, 2010, 29, 141-150.	0.6	24
130	Bulk Segregation Mapping of Mutations in Closely Related Strains of Mice. Genetics, 2010, 186, 1139-1146.	1.2	30
131	Consequences of Increased CD45RA and RC Isoforms for TCR Signaling and Peripheral T Cell Deficiency Resulting from Heterogeneous Nuclear Ribonucleoprotein L-Like Mutation. Journal of Immunology, 2010, 185, 231-238.	0.4	27
132	T-cell regulation by <i>casitas B-lineage lymphoma</i> (<i>Cblb</i>) is a critical failsafe against autoimmune disease due to <i>autoimmune regulator</i> (<i>Aire</i>) deficiency. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14709-14714.	3.3	40
133	The essential role of DOCK8 in humoral immunity. Disease Markers, 2010, 29, 141-50.	0.6	12
134	Roquin Differentiates the Specialized Functions of Duplicated T Cell Costimulatory Receptor Genes Cd28 and Icos. Immunity, 2009, 30, 228-241.	6.6	129
135	Themis is a member of a new metazoan gene family and is required for the completion of thymocyte positive selection. Nature Immunology, 2009, 10, 831-839.	7.0	108
136	Dock8 mutations cripple B cell immunological synapses, germinal centers and long-lived antibody production. Nature Immunology, 2009, 10, 1283-1291.	7.0	236
137	A mouse forward genetics screen identifies LISTERIN as an E3 ubiquitin ligase involved in neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2097-2103.	3.3	200
138	T-bet–dependent S1P5 expression in NK cells promotes egress from lymph nodes and bone marrow. Journal of Experimental Medicine, 2009, 206, 2469-2481.	4.2	290
139	Identification of a Steap3 endosomal targeting motif essential for normal iron metabolism. Blood, 2009, 113, 1805-1808.	0.6	75
140	Impaired lymphocyte development and antibody class switching and increased malignancy in a murine model of DNA ligase IV syndrome. Journal of Clinical Investigation, 2009, 119, 1696-1705.	3.9	33
141	Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Journal of Immunology, 2009, 183, 5442-8.	0.4	5
142	Memory T Cell RNA Rearrangement Programmed by Heterogeneous Nuclear Ribonucleoprotein hnRNPLL. Immunity, 2008, 29, 863-875.	6.6	71
143	Two levels of protection for the B cell genome during somatic hypermutation. Nature, 2008, 451, 841-845.	13.7	524
144	The actin regulator coronin 1A is mutant in a thymic egress–deficient mouse strain and in a patient with severe combined immunodeficiency. Nature Immunology, 2008, 9, 1307-1315.	7.0	213

#	Article	IF	CITATIONS
145	Axon growth and guidance genes identify Tâ€dependent germinal centre B cells. Immunology and Cell Biology, 2008, 86, 3-14.	1.0	50
146	A mechanism for Ikaros regulation of human globin gene switching. British Journal of Haematology, 2008, 141, 080305033838221-???.	1.2	33
147	Defective Tâ€cell function leading to reduced antibody production in a <i>kleisinâ€Î²</i> mutant mouse. Immunology, 2008, 125, 208-217.	2.0	15
148	Aberrant Mucin Assembly in Mice Causes Endoplasmic Reticulum Stress and Spontaneous Inflammation Resembling Ulcerative Colitis. PLoS Medicine, 2008, 5, e54.	3.9	602
149	Genetic Lesions in Thymic T Cell Clonal Deletion and Thresholds for Autoimmunity. Novartis Foundation Symposium, 2008, , 180-199.	1.2	4
150	Nossal and Pike 1975: A Turning Point in the Effort to Define Self-Tolerance Mechanisms. Journal of Immunology, 2007, 179, 5617-5618.	0.4	3
151	A Role for Alström Syndrome Protein, Alms1, in Kidney Ciliogenesis and Cellular Quiescence. PLoS Genetics, 2007, 3, e8.	1.5	155
152	Enhancement and suppression of signaling by the conserved tail of IgG memory–type B cell antigen receptors. Journal of Experimental Medicine, 2007, 204, 759-769.	4.2	119
153	A mutation in a chromosome condensin II subunit, kleisin beta, specifically disrupts T cell development. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12445-12450.	3.3	53
154	Multistep Pathogenesis of Autoimmune Disease. Cell, 2007, 130, 25-35.	13.5	375
155	Opposing Functions of the T Cell Receptor Kinase ZAP-70 in Immunity and Tolerance Differentially Titrate in Response to Nucleotide Substitutions. Immunity, 2007, 27, 912-926.	6.6	137
156	Impairment of organ-specific T cell negative selection by diabetes susceptibility genes: genomic analysis by mRNA profiling. Genome Biology, 2007, 8, R12.	13.9	37
157	Chair's Introduction. Novartis Foundation Symposium, 2007, , 1-1.	1.2	1
158	Tracing the action of ILâ€2 in tolerance to isletâ€specific antigen. Immunology and Cell Biology, 2007, 85, 338-342.	1.0	29
159	DNA repair is limiting for haematopoietic stem cells during ageing. Nature, 2007, 447, 686-690.	13.7	475
160	Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA. Nature, 2007, 450, 299-303.	13.7	376
161	Tolerance Mechanisms in the Late Phase of the Antibody Response. , 2007, 596, 163-168.		9
162	Adaptive failure to high-fat diet characterizes steatohepatitis in Alms1 mutant mice. Biochemical and Biophysical Research Communications, 2006, 342, 1152-1159.	1.0	112

#	Article	IF	CITATIONS
163	Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. Blood, 2006, 108, 3777-3785.	0.6	394
164	The use of genomewide ENU mutagenesis screens to unravel complex mammalian traits: identifying genes that regulate organ-specific and systemic autoimmunity. Immunological Reviews, 2006, 210, 27-39.	2.8	24
165	ENU-mutagenesis: insight into immune function and pathology. Current Opinion in Immunology, 2006, 18, 627-633.	2.4	59
166	Fat Aussie—A New Alstrol^m Syndrome Mouse Showing a Critical Role for ALMS1 in Obesity, Diabetes, and Spermatogenesis. Molecular Endocrinology, 2006, 20, 1610-1622.	3.7	147
167	Essential role of membrane cholesterol in accelerated BCR internalization and uncoupling from NF-κB in B cell clonal anergy. Journal of Experimental Medicine, 2006, 203, 1773-1783.	4.2	51
168	Lymphoma and the Control of B Cell Growth and Differentiation. Current Molecular Medicine, 2006, 6, 291-308.	0.6	32
169	Spontaneous B cell hyperactivity in autoimmune-prone MRL mice. International Immunology, 2006, 18, 1127-1137.	1.8	24
170	IMMUNOLOGY: Discriminating Microbe from Self Suffers a Double Toll. Science, 2006, 312, 1606-1608.	6.0	24
171	ERK Signaling Is a Molecular Switch Integrating Opposing Inputs from B Cell Receptor and T Cell Cytokines to Control TLR4-Driven Plasma Cell Differentiation. Journal of Immunology, 2006, 177, 5337-5346.	0.4	81
172	A Novel Mechanism for Complement Activation at the Surface of B Cells Following Antigen Binding. Journal of Immunology, 2006, 177, 5155-5162.	0.4	8
173	Thrombocytopenia and kidney disease in mice with a mutation in the C1galt1 gene. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16442-16447.	3.3	76
174	Essential role of membrane cholesterol in accelerated BCR internalization and uncoupling from NF-κB in B cell clonal anergy. Journal of Cell Biology, 2006, 174, i5-i5.	2.3	0
175	Genes, pathways and checkpoints in lymphocyte development and homeostasis. Immunology and Cell Biology, 2005, 83, 318-335.	1.0	24
176	A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature, 2005, 435, 452-458.	13.7	777
177	Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature, 2005, 435, 590-597.	13.7	586
178	Genetic lesions in T-cell tolerance and thresholds for autoimmunity. Immunological Reviews, 2005, 204, 87-101.	2.8	69
179	Analysis of Lyn/CD22 double-deficient B cellsin vivo demonstrates Lyn- and CD22-independent pathways affecting BCR regulation and B cell survival. European Journal of Immunology, 2005, 35, 3655-3663.	1.6	15
180	A repository of ENU mutant mouse lines and their potential for male fertility research. Molecular Human Reproduction, 2005, 11, 871-880.	1.3	18

#	Article	IF	CITATIONS
181	Connecting Mammalian Genome with Phenome by ENU Mouse Mutagenesis: Gene Combinations Specifying the Immune System. Annual Review of Genetics, 2005, 39, 241-262.	3.2	39
182	Specific Activation of Human beta-Globin Gene Expression by the Transcription Factor Ikaros Blood, 2005, 106, 3641-3641.	0.6	0
183	Gene Dosage–limiting Role of Aire in Thymic Expression, Clonal Deletion, and Organ-specific Autoimmunity. Journal of Experimental Medicine, 2004, 200, 1015-1026.	4.2	271
184	Illuminating Autoimmune Regulators through Controlled Variation of the Mouse Genome Sequence. Immunity, 2004, 20, 669-679.	6.6	44
185	Generalized Resistance to Thymic Deletion in the NOD Mouse. Immunity, 2004, 21, 817-830.	6.6	90
186	126.A repository of ENU mutant mouse lines and their potential for male fertility research. Reproduction, Fertility and Development, 2004, 16, 126.	0.1	0
187	The Role of Endoplasmic Reticulum Stress in Nonimmune Diabetes: NOD.k iHEL, a Novel Model of \hat{l}^2 Cell Death. Annals of the New York Academy of Sciences, 2003, 1005, 178-183.	1.8	23
188	Scaffolding of antigen receptors for immunogenic versus tolerogenic signaling. Nature Immunology, 2003, 4, 1057-1064.	7.0	96
189	Aire regulates negative selection of organ-specific T cells. Nature Immunology, 2003, 4, 350-354.	7.0	729
190	Resistance to CpG DNA–induced autoimmunity through tolerogenic B cell antigen receptor ERK signaling. Nature Immunology, 2003, 4, 594-600.	7.0	185
191	Identifying the MAGUK Protein Carma-1 as a Central Regulator of Humoral Immune Responses and Atopy by Genome-Wide Mouse Mutagenesis. Immunity, 2003, 18, 751-762.	6.6	283
192	Widespread Failure of Hematolymphoid Differentiation Caused by a Recessive Niche-Filling Allele of the Ikaros Transcription Factor. Immunity, 2003, 19, 131-144.	6.6	144
193	8. The identification of mutations affecting male fertility using denaturing high performance liquid chromatography. Reproduction, Fertility and Development, 2003, 15, 8.	0.1	0
194	Analysis of an Ethylnitrosourea-generated Mouse Mutation Defines a Cell Intrinsic Role of Nuclear Factor PB2 in Regulating Circulating B Cell Numbers. Journal of Experimental Medicine, 2002, 196, 1113-1119.	4.2	53
195	Cellâ€intrinsic effects of nonâ€MHC NOD genes on dendritic cell generation in vivo. International Immunology, 2002, 14, 677-684.	1.8	35
196	Failure to Censor Forbidden Clones of CD4 T Cells in Autoimmune Diabetes. Journal of Experimental Medicine, 2002, 196, 1175-1188.	4.2	129
197	Novel approaches for identifying genes regulating lymphocyte development and function. Current Opinion in Immunology, 2002, 14, 260-265.	2.4	9
198	Intrinsic in vitro abnormalities in dendritic cell generation caused by nonâ€MHC nonâ€obese diabetic genes. Immunology and Cell Biology, 2002, 80, 198-206.	1.0	15

#	Article	IF	CITATIONS
199	DNA drives autoimmunity. Nature, 2002, 416, 595-597.	13.7	51
200	Burst-enhancing role of the IgG membrane tail as a molecular determinant of memory. Nature Immunology, 2002, 3, 182-188.	7.0	184
201	Analysis of B Cell Memory Formation Using DNA Microarrays. Annals of the New York Academy of Sciences, 2002, 975, 33-45.	1.8	16
202	Genome-Wide ENU Mutagenesis to Reveal Immune Regulators. Immunity, 2001, 15, 409-418.	6.6	126
203	Pathways for self-tolerance and the treatment of autoimmune diseases. Lancet, The, 2001, 357, 2115-2121.	6.3	79
204	Lyn/CD22/SHP-1 and Their Importance in Autoimmunity., 2001, 5, 151-160.		11
205	A genomic view of immunology. Nature, 2001, 409, 836-838.	13.7	81
206	Single epitope multiple staining to detect ultralow frequency B cells. Journal of Immunological Methods, 2001, 249, 137-146.	0.6	39
207	Organ-Specific Autoimmune Disease. Journal of Experimental Medicine, 2001, 194, F31-F36.	4.2	33
208	Autoimmunity, Self-Tolerance and Immune Homeostasis: From Whole Animal Phenotypes to Molecular Pathways. Advances in Experimental Medicine and Biology, 2001, 490, 33-40.	0.8	6
209	Functional Annotation of Mouse Genome Sequences. Science, 2001, 291, 1251-1255.	6.0	125
210	Genomic-scale gene expression analysis of lymphocyte growth, tolerance and malignancy. Current Opinion in Immunology, 2000, 12, 210-214.	2.4	24
211	B-lymphocyte quiescence, tolerance and activation as viewed by global gene expression profiling on microarrays. Immunological Reviews, 2000, 176, 216-246.	2.8	159
212	How self-tolerance and the immunosuppressive drug FK506 prevent B-cell mitogenesis. Nature, 2000, 403, 672-676.	13.7	169
213	Memory needs no reminders. Nature, 2000, 407, 576-577.	13.7	4
214	Gene Dose–Dependent Maturation and Receptor Editing of B Cells Expressing Immunoglobulin (Ig)g1 or Igm/Igg1 Tail Antigen Receptors. Journal of Experimental Medicine, 2000, 191, 1031-1044.	4.2	35
215	Entry of B Cell Receptor into Signaling Domains Is Inhibited in Tolerant B Cells. Journal of Experimental Medicine, 2000, 191, 1443-1448.	4.2	84
216	Role of Syk in B-cell development and antigen-receptor signaling. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 1713-1718.	3.3	111

#	Article	IF	Citations
217	Growing up on the streets: why B-cell development differs from T-cell development. Trends in Immunology, 1999, 20, 217-220.	7. 5	36
218	Regulation of B Cell Antigen Receptor Signaling by the Lyn/CD22/SHP1 Pathway. Current Topics in Microbiology and Immunology, 1999, 244, 57-68.	0.7	34
219	Mechanisms of Self-tolerance and Autoimmunity: From Whole-animal Phenotypes to Molecular Pathways. Cold Spring Harbor Symposia on Quantitative Biology, 1999, 64, 313-322.	2.0	9
220	Immune responses: Costimulatory receptors have their say. Current Biology, 1998, 8, R575-R577.	1.8	11
221	The in vivo balance between B cell clonal expansion and elimination is regulated by CD95 both on B cells and in their micro-environment. Immunology and Cell Biology, 1998, 76, 387-394.	1.0	7
222	A critical role of complement in regulation of self-reactive B cells. Molecular Immunology, 1998, 35, 338.	1.0	2
223	Polygenic Autoimmune Traits: Lyn, CD22, and SHP-1 Are Limiting Elements of a Biochemical Pathway Regulating BCR Signaling and Selection. Immunity, 1998, 8, 497-508.	6.6	413
224	Self-Reactive B Lymphocytes Overexpressing Bcl-xL Escape Negative Selection and Are Tolerized by Clonal Anergy and Receptor Editing. Immunity, 1998, 9, 35-45.	6.6	118
225	A Critical Role for Complement in Maintenance of Self-Tolerance. Immunity, 1998, 9, 721-731.	6.6	346
226	Dependence of Germinal Center B Cells on Expression of CD21/CD35 for Survival. Science, 1998, 280, 582-585.	6.0	258
227	POSITIVE VERSUS NEGATIVE SIGNALING BY LYMPHOCYTE ANTIGEN RECEPTORS. Annual Review of Immunology, 1998, 16, 645-670.	9.5	299
228	Spontaneous Follicular Exclusion of SHP1-deficient B Cells Is Conditional on the Presence of Competitor Wild-type B Cells. Journal of Experimental Medicine, 1998, 187, 929-937.	4.2	32
229	Repression of B7.2 on Self-reactive B Cells Is Essential to Prevent Proliferation and Allow Fas-mediated Deletion by CD4+ T Cells. Journal of Experimental Medicine, 1998, 188, 651-659.	4.2	89
230	Abortive Proliferation of Rare T Cells Induced by Direct or Indirect Antigen Presentation by Rare B Cells In Vivo. Journal of Experimental Medicine, 1998, 187, 1611-1621.	4.2	82
231	Cancer immunotherapy: new leads on an elusive goal. Medical Journal of Australia, 1998, 169, 570-571.	0.8	0
232	Quantitative and Qualitative Control of Antigen Receptor Signalling in Tolerant B Lymphocytes. Novartis Foundation Symposium, 1998, 215, 137-145.	1.2	20
233	B Cell Antigen Receptor Signalling in the Balance of Tolerance and Immunity. Novartis Foundation Symposium, 1998, 215, 21-40.	1.2	13
234	Regulation of mouse CD72 gene expression during B lymphocyte development. Journal of Immunology, 1998, 161, 4760-7.	0.4	21

#	Article	IF	CITATIONS
235	Self-reactive B Cells Are Not Eliminated or Inactivated by Autoantigen Expressed on Thyroid Epithelial Cells. Journal of Experimental Medicine, 1997, 186, 2005-2012.	4.2	64
236	CD19-Regulated Signaling Thresholds Control Peripheral Tolerance and Autoantibody Production in B Lymphocytes. Journal of Experimental Medicine, 1997, 186, 1923-1931.	4.2	180
237	Different Nuclear Signals Are Activated by the B Cell Receptor during Positive Versus Negative Signaling. Immunity, 1997, 6, 419-428.	6.6	364
238	T Cell–Mediated Elimination of B7.2 Transgenic B Cells. Immunity, 1997, 6, 327-339.	6.6	43
239	Tuning Antigen Receptor Signaling by CD22: Integrating Cues from Antigens and the Microenvironment. Immunity, 1997, 6, 509-517.	6.6	182
240	A Range of CD4 T Cell Tolerance: Partial Inactivation to Organ-Specific Antigen Allows Nondestructive Thyroiditis or Insulitis. Immunity, 1997, 7, 255-271.	6.6	175
241	Balancing Immunity, Autoimmunity, and Self-tolerance. Annals of the New York Academy of Sciences, 1997, 815, 55-60.	1.8	36
242	Chance encounters and organized rendezvous. Immunological Reviews, 1997, 156, 5-10.	2.8	39
243	Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature, 1997, 386, 855-858.	13.7	1,684
244	Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature, 1997, 388, 308-308.	13.7	1,085
245	Lymphocyte homing: The scent of a follicle. Current Biology, 1997, 7, R219-R222.	1.8	40
246	Glimpses into the Balance Between Immunity and Selfâ€Tolerance. Novartis Foundation Symposium, 1997, 204, 190-207.	1.2	6
247	Antigen-specific B cells preferentially induce CD4+ T cells to produce IL-4. Journal of Immunology, 1997, 158, 4171-9.	0.4	80
248	Redundant expression but selective utilization of nuclear factor of activated T cells family members. Journal of Immunology, 1997, 159, 2735-40.	0.4	49
249	Expansion or Elimination of B Cells In Vivo: Dual Roles for CD40- and Fas (CD95)-Ligands Modulated by the B Cell Antigen Receptor. Cell, 1996, 87, 319-329.	13.5	392
250	C3d of Complement as a Molecular Adjuvant: Bridging Innate and Acquired Immunity. Science, 1996, 271, 348-350.	6.0	1,133
251	Intravenous injection of soluble antigen induces thymic and peripheral T-cells apoptosis Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 3031-3036.	3.3	187
252	Balancing immunity and tolerance: deleting and tuning lymphocyte repertoires Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 2264-2271.	3.3	423

#	Article	IF	CITATIONS
253	Immunological tolerance: Danger – pathogen on the premises!. Current Biology, 1996, 6, 519-522.	1.8	91
254	Regulation of B-lymphocyte negative and positive selection by tyrosine phosphatase CD45. Nature, 1996, 381, 325-328.	13.7	236
255	Autoimmunity: The Fas track. Current Biology, 1995, 5, 1218-1221.	1.8	21
256	Signaling through murine CD38 is impaired in antigen receptor-unresponsive B cells. European Journal of Immunology, 1995, 25, 1338-1345.	1.6	49
257	IgD expression on B cells is more efficient than IgM but both receptors are functionally equivalent in up-regulation CD80/CD86 co-stimulatory molecules. European Journal of Immunology, 1995, 25, 1980-1984.	1.6	19
258	Antigen-induced B-cell death and elimination during germinal-centre immune responses. Nature, 1995, 375, 334-338.	13.7	374
259	CD95 (Fas)-dependent elimination of self-reactive B cells upon interaction with CD4+T cells. Nature, 1995, 376, 181-184.	13.7	473
260	The regulation of self-reactive B cells. Current Opinion in Immunology, 1995, 7, 804-811.	2.4	73
261	Pertussis toxin inhibits migration of B and T lymphocytes into splenic white pulp cords Journal of Experimental Medicine, 1995, 182, 581-586.	4.2	185
262	Self-Tolerance Checkpoints in B Lymphocyte Development. Advances in Immunology, 1995, 59, 279-368.	1.1	281
263	Antigen-induced exclusion from follicles and anergy are separate and complementary processes that influence peripheral B cell fate. Immunity, 1995, 3, 691-701.	6.6	248
264	Protein tyrosine phosphatase 1C negatively regulates antigen receptor signaling in B lymphocytes and determines thresholds for negative selection. Immunity, 1995, 2, 13-24.	6.6	390
265	A selective defect in IgM antigen receptor synthesis and transport causes loss of cell surface IgM expression on tolerant B lymphocytes EMBO Journal, 1994, 13, 816-826.	3 . 5	67
266	Censoring of self-reactive B cells with a range of receptor affinities in transgenic mice expressing heavy chains for a lysozyme-specific antibody. International Immunology, 1994, 6, 1417-1425.	1.8	61
267	Resting and anergic B cells are defective in CD28-dependent costimulation of naive CD4+ T cells Journal of Experimental Medicine, 1994, 179, 1539-1549.	4.2	287
268	Immunoglobulin signal transduction guides the specificity of B cell-T cell interactions and is blocked in tolerant self-reactive B cells Journal of Experimental Medicine, 1994, 179, 425-438.	4.2	326
269	Differential regulation of early and late stages of B lymphocyte development by the \hat{l}^4 and \hat{l} membrane heavy chains of lg. International Immunology, 1994, 6, 1905-1916.	1.8	10
270	Competition for follicular niches excludes self-reactive cells from the recirculating B-cell repertoire. Nature, 1994, 371, 389-395.	13.7	527

#	Article	IF	CITATIONS
271	Manipulation of Transgene-Encoded Self-Antigens to Explore Mechanisms of B Cell Tolerance. , 1994, , 227-249.		O
272	A selective defect in IgM antigen receptor synthesis and transport causes loss of cell surface IgM expression on tolerant B lymphocytes. EMBO Journal, 1994, 13, 816-26.	3.5	19
273	Differential up-regulation of the B7-1 and B7-2 costimulatory molecules after Ig receptor engagement by antigen. Journal of Immunology, 1994, 153, 1990-7.	0.4	203
274	Effects of the lpr mutation on elimination and inactivation of self-reactive B cells. Journal of Immunology, 1994, 153, 2831-42.	0.4	117
275	Ig heavy chain extracellular spacer confers unique glycosylation of the Mb-1 component of the B cell antigen receptor complex. Journal of Immunology, 1994, 152, 3925-34.	0.4	11
276	Elimination of self-reactive B lymphocytes proceeds in two stages: Arrested development and cell death. Cell, 1993, 72, 325-335.	13.5	483
277	Tolerant Autoreactive B Lymphocytes in the Follicular Mantle Zone Compartment: Substrates for Receptor Editing and Reform., 1993,, 25-36.		0
278	Development and follicular localization of tolerant B lymphocytes in lysozyme/anti-lysozyme lgM/lgD transgenic mice. International Immunology, 1992, 4, 163-175.	1.8	143
279	Immunoglobulin M and D antigen receptors are both capable of mediating B lymphocyte activation, deletion, or anergy after interaction with specific antigen Journal of Experimental Medicine, 1992, 176, 991-1005.	4.2	142
280	Transgenic Mice and Analysis of B-Cell Tolerance. Annual Review of Immunology, 1992, 10, 489-518.	9.5	349
281	Autoimmune tolerance and Type 1 (insulin-dependent) diabetes mellitus. Diabetologia, 1992, 35, S49-S59.	2.9	10
282	B-cell tolerance. Current Opinion in Immunology, 1992, 4, 703-710.	2.4	32
283	Safe havens for self-reactive cells. Current Biology, 1992, 2, 417-419.	1.8	2
284	Breakdown of self-tolerance in anergic B lymphocytes. Nature, 1991, 352, 532-536.	13.7	242
285	Elimination from peripheral lymphoid tissues of self-reactive B lymphocytes recognizing membrane-bound antigens. Nature, 1991, 353, 765-769.	13.7	649
286	Self Tolerance in the B-Cell Repertoire. Immunological Reviews, 1991, 122, 5-19.	2.8	75
287	Induction of self-tolerance in T cells but not B cells of transgenic mice expressing little self antigen. Science, 1991, 251, 1223-1225.	6.0	210
288	Class II-restricted presentation of an endogenously derived immunodominant T-cell determinant of hen egg lysozyme Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 3290-3294.	3.3	88

#	Article	IF	CITATIONS
289	The coming of transgenic mice: tolerance and immune reactivity. Trends in Immunology, 1990, 11, 69-72.	7.5	10
290	Intrinsic B-cell hyporesponsiveness accounts for self-tolerance in lysozyme/anti-lysozyme double-transgenic mice Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 5687-5691.	3.3	92
291	The need for central and peripheral tolerance in the B cell repertoire. Science, 1990, 248, 1373-1379.	6.0	144
292	Cellular mechanisms of self-tolerance. Current Opinion in Immunology, 1989, 2, 226-236.	2.4	15
293	Induction of self-tolerance in mature peripheral B lymphocytes. Nature, 1989, 342, 385-391.	13.7	494
294	Self-Tolerance in B-Cells from Different Lines of Lysozyme Double-Transgenic Mice. , 1989, , 377-384.		2
295	Clonal Silencing of Self-reactive B Lymphocytes in a Transgenic Mouse Model. Cold Spring Harbor Symposia on Quantitative Biology, 1989, 54, 907-920.	2.0	31
296	Self-tolerance in B lymphocytes. Seminars in Immunology, 1989, 1, 125-35.	2.7	11
297	Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature, 1988, 334, 676-682.	13.7	1,475
298	Expression of T-cell receptor alpha-chain genes in transgenic mice Molecular and Cellular Biology, 1988, 8, 5459-5469.	1.1	59
299	Expression of T-cell Receptor Alpha-Chain Genes in Transgenic Mice. Molecular and Cellular Biology, 1988, 8, 5459-5469.	1.1	19
300	Secretion of a chimeric T-cell receptor-immunoglobulin protein Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 2936-2940.	3.3	68
301	Expression of T cell receptor genes in an antigen-specific hybridoma and radiation-induced variants Journal of Experimental Medicine, 1986, 164, 113-130.	4.2	12
302	T-cell receptor gene structure and function. Cellular Immunology, 1986, 99, 24-28.	1.4	3
303	Variability and repertoire size of T-cell receptor Vα gene segments. Nature, 1985, 317, 430-434.	13.7	145
304	Co-expression of an epitope on human free kappa-light chains and on a cytoplasmic component in activated T cells. Journal of Immunology, 1985, 134, 1059-64.	0.4	6
305	Structural analysis of the myeloma-associated membrane antigen KMA. Journal of Immunology, 1985, 135, 1276-80.	0.4	12