Michael E Sieracki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1417607/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Mediocremonas mediterraneus</i> , a New Member within the Developea. Journal of Eukaryotic Microbiology, 2021, 68, e12825.	1.7	2
2	Comparative genomics reveals new functional insights in uncultured MAST species. ISME Journal, 2021, 15, 1767-1781.	9.8	18
3	Niche adaptation promoted the evolutionary diversification of tiny ocean predators. Proceedings of the United States of America, 2021, 118, .	7.1	12
4	Single Cell Genomics Reveals Viruses Consumed by Marine Protists. Frontiers in Microbiology, 2020, 11, 524828.	3.5	26
5	Reconstruction of protein domain evolution using single-cell amplified genomes of uncultured choanoflagellates sheds light on the origin of animals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190088.	4.0	36
6	Single cell ecogenomics reveals mating types of individual cells and ssDNA viral infections in the smallest photosynthetic eukaryotes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190089.	4.0	11
7	Evaluation of single-cell genomics to address evolutionary questions using three SAGs of the choanoflagellate Monosiga brevicollis. Scientific Reports, 2017, 7, 11025.	3.3	19
8	Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Scientific Data, 2017, 4, 170093.	5.3	147
9	Accessing the genomic information of unculturable oceanic picoeukaryotes by combining multiple single cells. Scientific Reports, 2017, 7, 41498.	3.3	47
10	Exploring Microdiversity in Novel Kordia sp. (Bacteroidetes) with Proteorhodopsin from the Tropical Indian Ocean via Single Amplified Genomes. Frontiers in Microbiology, 2017, 8, 1317.	3.5	7
11	Eukaryotic plankton diversity in the sunlit ocean. Science, 2015, 348, 1261605.	12.6	1,551
12	The others: our biased perspective of eukaryotic genomes. Trends in Ecology and Evolution, 2014, 29, 252-259.	8.7	167
13	Exploring the uncultured microeukaryote majority in the oceans: reevaluation of ribogroups within stramenopiles. ISME Journal, 2014, 8, 854-866.	9.8	157
14	Taming the smallest predators of the oceans. ISME Journal, 2013, 7, 351-358.	9.8	44
15	Unveiling <i>in situ</i> interactions between marine protists and bacteria through single cell sequencing. ISME Journal, 2012, 6, 703-707.	9.8	124
16	High-throughput single-cell sequencing identifies photoheterotrophs and chemoautotrophs in freshwater bacterioplankton. ISME Journal, 2012, 6, 113-123.	9.8	168
17	A Holistic Approach to Marine Eco-Systems Biology. PLoS Biology, 2011, 9, e1001177.	5.6	353
18	Potential for Chemolithoautotrophy Among Ubiquitous Bacteria Lineages in the Dark Ocean. Science, 2011, 333, 1296-1300.	12.6	510

MICHAEL E SIERACKI

#	Article	IF	CITATIONS
19	Single-Cell Genomics Reveals Organismal Interactions in Uncultivated Marine Protists. Science, 2011, 332, 714-717.	12.6	283
20	Planktonic Microbes in the Gulf of Maine Area. PLoS ONE, 2011, 6, e20981.	2.5	23
21	Capturing diversity of marine heterotrophic protists: one cell at a time. ISME Journal, 2011, 5, 674-684.	9.8	86
22	Targeted Sorting of Single Virus-Infected Cells of the Coccolithophore Emiliania huxleyi. PLoS ONE, 2011, 6, e22520.	2.5	23
23	Assembling the Marine Metagenome, One Cell at a Time. PLoS ONE, 2009, 4, e5299.	2.5	320
24	Lighting up phytoplankton cells with quantum dots. Limnology and Oceanography: Methods, 2008, 6, 653-658.	2.0	4
25	Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9052-9057.	7.1	278
26	RAPID: Research on Automated Plankton Identification. Oceanography, 2007, 20, 172-187.	1.0	409
27	Distribution of planktonic aerobic anoxygenic photoheterotrophic bacteria in the northwest Atlantic. Limnology and Oceanography, 2006, 51, 38-46.	3.1	93
28	Nitrogen and silicon limitation of phytoplankton communities across an urban estuary: The East River-Long Island Sound system. Estuarine, Coastal and Shelf Science, 2006, 68, 127-138.	2.1	61
29	New Approaches and Technologies for Observing Harmful Algal Blooms. Oceanography, 2005, 18, 210-227.	1.0	76
30	Phylogenetic Diversity and Specificity of Bacteria Closely Associated with Alexandrium spp. and Other Phytoplankton. Applied and Environmental Microbiology, 2005, 71, 3483-3494.	3.1	198
31	Pico- and nanoplankton dynamics during bloom initiation of Aureococcus in a Long Island, NY bay. Harmful Algae, 2004, 3, 459-470.	4.8	35
32	Specific absorption coefficient and phytoplankton biomass in the southern region of the California Current. Deep-Sea Research Part II: Topical Studies in Oceanography, 2004, 51, 817-826.	1.4	30
33	Specific absorption coefficient and phytoplankton biomass in the southern region of the California Current. Deep-Sea Research Part II: Topical Studies in Oceanography, 2004, 51, 817-826.	1.4	3
34	Counting heterotrophic nanoplanktonic protists in cultures and aquatic communities by flow cytometry. Aquatic Microbial Ecology, 2004, 34, 263-277.	1.8	84
35	Aerobic anoxygenic phototrophic bacteria and their roles in marine ecosystems. Science Bulletin, 2003, 48, 1064-1068.	1.7	15
36	A TRANSIENT BLOOM OF <i>OSTREOCOCCUS</i> (CHLOROPHYTA, PRASINOPHYCEAE) IN WEST NECK BAY, LONG ISLAND, NEW YORK. Journal of Phycology, 2003, 39, 850-854.	2.3	54

MICHAEL E SIERACKI

#	Article	IF	CITATIONS
37	Effects of mismatched refractive indices in aquatic flow cytometry. Cytometry, 2001, 44, 173-178.	1.8	16
38	Flow Cytometric Analysis of 5-Cyano-2,3-Ditolyl Tetrazolium Chloride Activity of Marine Bacterioplankton in Dilution Cultures. Applied and Environmental Microbiology, 1999, 65, 2409-2417.	3.1	85
39	Carbon and nitrogen densities of the cultured marine heterotrophic flagellate Paraphysomonas sp Journal of Microbiological Methods, 1998, 34, 151-163.	1.6	7
40	Ecology of a Chaetoceros socialis Lauder Patch on Georges Bank: Distribution, Microbial Associations, and Grazing Losses. Oceanography, 1998, 11, 30-35.	1.0	19
41	An imaging-in-flow system for automated analysis of marine microplankton. Marine Ecology - Progress Series, 1998, 168, 285-296.	1.9	328
42	CELLULAR DNA CONTENT OF MARINE PHYTOPLANKTON USING TWO NEW FLUOROCHROMES: TAXONOMIC AND ECOLOGICAL IMPLICATIONS1. Journal of Phycology, 1997, 33, 527-541.	2.3	206
43	Microzooplankton grazing of primary production at 140°W in the equatorial Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 1996, 43, 1227-1255.	1.4	133
44	Overestimation of heterotrophic bacteria in the Sargasso Sea: direct evidence by flow and imaging cytometry. Deep-Sea Research Part I: Oceanographic Research Papers, 1995, 42, 1399-1409.	1.4	76
45	Nanoplankton and protozoan microzooplankton during the JGOFS North Atlantic Bloom Experiment: 1989 and 1990. Journal of the Marine Biological Association of the United Kingdom, 1994, 74, 427-443.	0.8	73
46	Plankton community response to sequential silicate and nitrate depletion during the 1989 North Atlantic spring bloom. Deep-Sea Research Part II: Topical Studies in Oceanography, 1993, 40, 213-225.	1.4	163
47	Grazing, growth and mortality of microzooplankton during the 1989 North Atlantic spring bloom at 47°N, 18°W. Deep-Sea Research Part I: Oceanographic Research Papers, 1993, 40, 1793-1814.	1.4	124
48	Abundance, biomass and distribution of heterotrophic dinoflagellates during the North Atlantic spring bloom. Deep-Sea Research Part II: Topical Studies in Oceanography, 1993, 40, 227-244.	1.4	57
49	Biological and hydrodynamic regulation of the microbial food web in a periodically mixed estuary. Limnology and Oceanography, 1993, 38, 1666-1679.	3.1	32
50	Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnology and Oceanography, 1992, 37, 1434-1446.	3.1	550
51	Distributions and fluorochrome-staining properties of submicrometer particles and bacteria in the North Atlantic. Deep-sea Research Part A, Oceanographic Research Papers, 1992, 39, 1919-1929.	1.5	31
52	Model-based frequency response characterization of a digital-image analysis system for epifluorescence microscopy. Applied Optics, 1992, 31, 1083.	2.1	2
53	Spring phytoplankton blooms in the absence of vertical water column stratification. Nature, 1992, 360, 59-62.	27.8	222
54	The Application of Image Analysed Fluorescence Microscopy for Characterising Planktonic Bacteria		6

The Application of Image Analys and Protists. , 1991, , 77-100. ising P lar 54 γY

MICHAEL E SIERACKI

#	Article	IF	CITATIONS
55	Algorithm to estimate cell biovolume using image analyzed microscopy. Cytometry, 1989, 10, 551-557.	1.8	70
56	Autotrophic picoplankton dynamics in a Chesapeake Bay sub-estuary. Marine Ecology - Progress Series, 1989, 52, 273-285.	1.9	74
57	The first methane-oxidizing bacterium from the upper mixing layer of the deep ocean:Methylomonas pelagica sp. nov Current Microbiology, 1987, 14, 285-293.	2.2	121