
## Johanna Tommiska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1417430/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | InÂvitro reconstitution reveals cooperative mechanisms of adapter protein-mediated activation of phospholipase C-γ1 in T cells. Journal of Biological Chemistry, 2022, 298, 101680.                                        | 3.4  | 5         |
| 2  | Activating Adenosine Monophosphate–Activated Protein Kinase Mediates Fibroblast Growth Factor 1<br>Protection From Nonalcoholic Fatty Liver Disease in Mice. Hepatology, 2021, 73, 2206-2222.                              | 7.3  | 43        |
| 3  | Paracrine FGFs target skeletal muscle to exert potent anti-hyperglycemic effects. Nature Communications, 2021, 12, 7256.                                                                                                   | 12.8 | 32        |
| 4  | Neuron-Derived Neurotrophic Factor Is Mutated in Congenital Hypogonadotropic Hypogonadism.<br>American Journal of Human Genetics, 2020, 106, 58-70.                                                                        | 6.2  | 39        |
| 5  | Fibroblast growth factor signalling in osteoarthritis and cartilage repair. Nature Reviews<br>Rheumatology, 2020, 16, 547-564.                                                                                             | 8.0  | 81        |
| 6  | Rhenium N-heterocyclic carbene complexes block growth of aggressive cancers by inhibiting FGFR- and<br>SRC-mediated signalling. Journal of Experimental and Clinical Cancer Research, 2020, 39, 276.                       | 8.6  | 14        |
| 7  | FGF6 and FGF9 regulate UCP1 expression independent of brown adipogenesis. Nature Communications, 2020, 11, 1421.                                                                                                           | 12.8 | 67        |
| 8  | Molecular basis for receptor tyrosine kinase A-loop tyrosine transphosphorylation. Nature Chemical<br>Biology, 2020, 16, 267-277.                                                                                          | 8.0  | 31        |
| 9  | A Conserved Allosteric Pathway in Tyrosine Kinase Regulation. Structure, 2019, 27, 1308-1315.e3.                                                                                                                           | 3.3  | 16        |
| 10 | Paracrine-endocrine FGF chimeras as potent therapeutics for metabolic diseases. EBioMedicine, 2019, 48, 462-477.                                                                                                           | 6.1  | 17        |
| 11 | A G protein–coupled, IP3/protein kinase C pathway controlling the synthesis of phosphaturic hormone<br>FGF23. JCI Insight, 2019, 4, .                                                                                      | 5.0  | 16        |
| 12 | α-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling. Nature, 2018, 553,<br>461-466.                                                                                                                | 27.8 | 348       |
| 13 | Fibroblast growth factor 1 ameliorates diabetic nephropathy by an anti-inflammatory mechanism.<br>Kidney International, 2018, 93, 95-109.                                                                                  | 5.2  | 117       |
| 14 | Fibroblast Growth Factor Binding Protein 3 (FGFBP3) impacts carbohydrate and lipid metabolism.<br>Scientific Reports, 2018, 8, 15973.                                                                                      | 3.3  | 12        |
| 15 | Inhibition of fibroblast growth factor 23 (FGF23) signaling rescues renal anemia. FASEB Journal, 2018, 32, 3752-3764.                                                                                                      | 0.5  | 85        |
| 16 | A threshold model for receptor tyrosine kinase signaling specificity and cell fate determination.<br>F1000Research, 2018, 7, 872.                                                                                          | 1.6  | 52        |
| 17 | Therapeutic Effects of FGF23 c-tail Fc in a Murine Preclinical Model of X-Linked Hypophosphatemia Via<br>the Selective Modulation of Phosphate Reabsorption. Journal of Bone and Mineral Research, 2017, 32,<br>2062-2073. | 2.8  | 22        |
| 18 | A novel fibroblast growth factor-1 ligand with reduced heparin binding protects the heart against ischemia-reperfusion injury in the presence of heparin co-administration. Cardiovascular Research, 2017, 113, 1585-1602  | 3.8  | 23        |

JOHANNA TOMMISKA

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | <i> <scp>KLB</scp> </i> , encoding βâ€Klotho, is mutated in patients with congenital hypogonadotropic<br>hypogonadism. EMBO Molecular Medicine, 2017, 9, 1379-1397.                                                     | 6.9  | 77        |
| 20 | Uncoupling the Mitogenic and Metabolic Functions of FGF1 by Tuning FGF1-FGF Receptor Dimer Stability. Cell Reports, 2017, 20, 1717-1728.                                                                                | 6.4  | 71        |
| 21 | Regulation of Receptor Binding Specificity of FGF9 by an Autoinhibitory Homodimerization. Structure, 2017, 25, 1325-1336.e3.                                                                                            | 3.3  | 25        |
| 22 | Two missense mutations in KCNQ1 cause pituitary hormone deficiency and maternally inherited gingival fibromatosis. Nature Communications, 2017, 8, 1289.                                                                | 12.8 | 33        |
| 23 | Elucidation of a four-site allosteric network in fibroblast growth factor receptor tyrosine kinases.<br>ELife, 2017, 6, .                                                                                               | 6.0  | 38        |
| 24 | β-Klotho deficiency protects against obesity through a crosstalk between liver, microbiota, and brown<br>adipose tissue. JCI Insight, 2017, 2, .                                                                        | 5.0  | 41        |
| 25 | Gonadotropin-releasing hormone receptor mutations in ageing men. Clinical Endocrinology, 2016, 84,<br>150-151.                                                                                                          | 2.4  | 1         |
| 26 | Fibulin-1 Binds to Fibroblast Growth Factor 8 with High Affinity. Journal of Biological Chemistry, 2016, 291, 18730-18739.                                                                                              | 3.4  | 10        |
| 27 | Fibroblast growth factor 21 deficiency exacerbates chronic alcohol-induced hepatic steatosis and injury. Scientific Reports, 2016, 6, 31026.                                                                            | 3.3  | 58        |
| 28 | Complete androgen insensitivity syndrome caused by a deep intronic pseudoexon-activating mutation in the androgen receptor gene. Scientific Reports, 2016, 6, 32819.                                                    | 3.3  | 42        |
| 29 | Two FGF Receptor Kinase Molecules Act in Concert to Recruit and Transphosphorylate Phospholipase CÎ <sup>3</sup> . Molecular Cell, 2016, 61, 98-110.                                                                    | 9.7  | 48        |
| 30 | Childhood growth in boys with congenital hypogonadotropic hypogonadism. Pediatric Research, 2016,<br>79, 705-709.                                                                                                       | 2.3  | 19        |
| 31 | FGF21 mediates alcohol-induced adipose tissue lipolysis by activation of systemic release of catecholamine in mice. Journal of Lipid Research, 2015, 56, 1481-1491.                                                     | 4.2  | 83        |
| 32 | A missense mutation in MKRN3 in a Danish girl with central precocious puberty and her brother with early puberty. Pediatric Research, 2015, 78, 709-711.                                                                | 2.3  | 38        |
| 33 | Congenital hypogonadotropic hypogonadism with split hand/foot malformation: a clinical entity with a high frequency of FGFR1 mutations. Genetics in Medicine, 2015, 17, 651-659.                                        | 2.4  | 55        |
| 34 | The demonstration of αKlotho deficiency in human chronic kidney disease with a novel synthetic antibody. Nephrology Dialysis Transplantation, 2015, 30, 223-233.                                                        | 0.7  | 124       |
| 35 | De novo SOX10 nonsense mutation in a patient with Kallmann syndrome and hearing loss. Pediatric Research, 2014, 76, 115-116.                                                                                            | 2.3  | 31        |
| 36 | Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase<br>inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111,<br>E4869-77. | 7.1  | 154       |

JOHANNA TOMMISKA

| #  | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Tyr Phosphorylation of PDP1 Toggles Recruitment between ACAT1 and SIRT3 to Regulate the Pyruvate<br>Dehydrogenase Complex. Molecular Cell, 2014, 53, 534-548.                                               | 9.7  | 247       |
| 38 | Genetics of congenital hypogonadotropic hypogonadism in Denmark. European Journal of Medical<br>Genetics, 2014, 57, 345-348.                                                                                | 1.3  | 30        |
| 39 | Mutation screening of SEMA3A and SEMA7A in patients with congenital hypogonadotropic hypogonadism. Pediatric Research, 2014, 75, 641-644.                                                                   | 2.3  | 64        |
| 40 | Circulating FGF21 Is Liver Derived and Enhances Glucose Uptake During Refeeding and Overfeeding.<br>Diabetes, 2014, 63, 4057-4063.                                                                          | 0.6  | 467       |
| 41 | Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer. Nature, 2014, 513, 436-439.                                                                                                    | 27.8 | 201       |
| 42 | Exploring mechanisms of FGF signalling through the lens of structural biology. Nature Reviews<br>Molecular Cell Biology, 2013, 14, 166-180.                                                                 | 37.0 | 449       |
| 43 | Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 Are Identified in Individuals with Congenital<br>Hypogonadotropic Hypogonadism. American Journal of Human Genetics, 2013, 92, 725-743.                  | 6.2  | 227       |
| 44 | PROKR2 mutations in autosomal recessive Kallmann syndrome. Fertility and Sterility, 2013, 99, 815-818.                                                                                                      | 1.0  | 20        |
| 45 | Parathyroid-Specific Deletion of Klotho Unravels a Novel Calcineurin-Dependent FGF23 Signaling<br>Pathway That Regulates PTH Secretion. PLoS Genetics, 2013, 9, e1003975.                                   | 3.5  | 139       |
| 46 | Reversible Congenital Hypogonadotropic Hypogonadism in Patients with CHD7, FGFR1 or GNRHR<br>Mutations. PLoS ONE, 2012, 7, e39450.                                                                          | 2.5  | 81        |
| 47 | Incidence, Phenotypic Features and Molecular Genetics of Kallmann Syndrome in Finland. Orphanet<br>Journal of Rare Diseases, 2011, 6, 41.                                                                   | 2.7  | 147       |
| 48 | LIN28B, LIN28A, KISS1, and KISS1R in idiopathic central precocious puberty. BMC Research Notes, 2011, 4, 363.                                                                                               | 1.4  | 43        |
| 49 | LIN28B in Constitutional Delay of Growth and Puberty. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 3063-3066.                                                                                | 3.6  | 47        |
| 50 | Impaired Fibroblast Growth Factor Receptor 1 Signaling as a Cause of Normosmic Idiopathic<br>Hypogonadotropic Hypogonadism. Journal of Clinical Endocrinology and Metabolism, 2009, 94,<br>4380-4390.       | 3.6  | 82        |
| 51 | Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice.<br>Journal of Clinical Investigation, 2008, 118, 2822-2831.                                                | 8.2  | 348       |
| 52 | Tissue-specific Expression of βKlotho and Fibroblast Growth Factor (FGF) Receptor Isoforms<br>Determines Metabolic Activity of FGF19 and FGF21. Journal of Biological Chemistry, 2007, 282,<br>26687-26695. | 3.4  | 654       |
| 53 | ATM variants and cancer risk in breast cancer patients from Southern Finland. BMC Cancer, 2006, 6, 209.                                                                                                     | 2.6  | 23        |
| 54 | Evaluation ofRAD50 in familial breast cancer predisposition. International Journal of Cancer, 2006, 118, 2911-2916.                                                                                         | 5.1  | 51        |

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Mutations in fibroblast growth factor receptor 1 cause both Kallmann syndrome and normosmic<br>idiopathic hypogonadotropic hypogonadism. Proceedings of the National Academy of Sciences of the<br>United States of America, 2006, 103, 6281-6286. | 7.1 | 225       |
| 56 | The FGF signaling pathway and human disease. FASEB Journal, 2006, 20, A694.                                                                                                                                                                        | 0.5 | 0         |
| 57 | A protein canyon in the FGF–FGF receptor dimer selects from an à la carte menu of heparan sulfate<br>motifs. Current Opinion in Structural Biology, 2005, 15, 506-516.                                                                             | 5.7 | 132       |
| 58 | Breast Cancer Patients with p53 Pro72 Homozygous Genotype Have a Poorer Survival. Clinical Cancer<br>Research, 2005, 11, 5098-5103.                                                                                                                | 7.0 | 138       |
| 59 | Structural basis for fibroblast growth factor receptor activation. Cytokine and Growth Factor Reviews, 2005, 16, 107-137.                                                                                                                          | 7.2 | 625       |
| 60 | Biochemical analysis of pathogenic ligand-dependent FGFR2 mutations suggests distinct<br>pathophysiological mechanisms for craniofacial and limb abnormalities. Human Molecular Genetics,<br>2004, 13, 2313-2324.                                  | 2.9 | 131       |
| 61 | Crystal Structure of a Ternary FGF-FGFR-Heparin Complex Reveals a Dual Role for Heparin in FGFR<br>Binding and Dimerization. Molecular Cell, 2000, 6, 743-750.                                                                                     | 9.7 | 1,024     |