## Martin Zobel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1416876/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | LOTVS: A global collection of permanent vegetation plots. Journal of Vegetation Science, 2022, 33, .                                                                                                     | 2.2  | 4         |
| 2  | Plant diversity but not productivity is associated with community mycorrhization in temperate grasslands. Journal of Vegetation Science, 2022, 33, .                                                     | 2.2  | 2         |
| 3  | Global taxonomic and phylogenetic assembly of AM fungi. Mycorrhiza, 2022, 32, 135-144.                                                                                                                   | 2.8  | 14        |
| 4  | Structure and function of the soil microbiome underlying N2O emissions from global wetlands.<br>Nature Communications, 2022, 13, 1430.                                                                   | 12.8 | 72        |
| 5  | Global soil microbiomes: A new frontline of biomeâ€ecology research. Global Ecology and<br>Biogeography, 2022, 31, 1120-1132.                                                                            | 5.8  | 19        |
| 6  | Landscapes, management practices and their interactions shape soil fungal diversity in arable fields –<br>Evidence from a nationwide farmers' network. Soil Biology and Biochemistry, 2022, 168, 108652. | 8.8  | 7         |
| 7  | Dominance, diversity, and niche breadth in arbuscular mycorrhizal fungal communities. Ecology, 2022,<br>103, e3761.                                                                                      | 3.2  | 11        |
| 8  | Light availability and light demand of plants shape the arbuscular mycorrhizal fungal communities in their roots. Ecology Letters, 2021, 24, 426-437.                                                    | 6.4  | 20        |
| 9  | Global macroecology of nitrogenâ€fixing plants. Global Ecology and Biogeography, 2021, 30, 514-526.                                                                                                      | 5.8  | 16        |
| 10 | Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytologist, 2021, 231, 763-776.                                                                                 | 7.3  | 126       |
| 11 | Towards a consistent benchmark for plant mycorrhizal association databases. New Phytologist, 2021, 231, 913-916.                                                                                         | 7.3  | 12        |
| 12 | Woody encroachment in grassland elicits complex changes in the functional structure of above―and belowground biota. Ecosphere, 2021, 12, e03512.                                                         | 2.2  | 14        |
| 13 | sPlotOpen – An environmentally balanced, openâ€access, global dataset of vegetation plots. Global<br>Ecology and Biogeography, 2021, 30, 1740-1764.                                                      | 5.8  | 49        |
| 14 | The joint effect of host plant genetic diversity and arbuscular mycorrhizal fungal communities on restoration success. Functional Ecology, 2021, 35, 2621-2634.                                          | 3.6  | 8         |
| 15 | Fine-root traits in the global spectrum of plant form and function. Nature, 2021, 597, 683-687.                                                                                                          | 27.8 | 102       |
| 16 | Diversity of arbuscular mycorrhizal fungi and its chemical drivers across dryland habitats.<br>Mycorrhiza, 2021, 31, 685-697.                                                                            | 2.8  | 11        |
| 17 | Arbuscular Mycorrhizal Fungal Communities in the Soils of Desert Habitats. Microorganisms, 2021, 9, 229.                                                                                                 | 3.6  | 19        |
| 18 | Arbuscular mycorrhizal fungi promote small-scale vegetation recovery in the forest understorey.<br>Oecologia, 2021, 197, 685-697.                                                                        | 2.0  | 1         |

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The role of genetic diversity and arbuscular mycorrhizal fungal diversity in population recovery of the semi-natural grassland plant species Succisa pratensis. Bmc Ecology and Evolution, 2021, 21, 200.    | 1.6  | 4         |
| 20 | Widespread homogenization of plant communities in the Anthropocene. Nature Communications, 2021, 12, 6983.                                                                                                   | 12.8 | 57        |
| 21 | Asymmetric patterns of global diversity among plants and mycorrhizal fungi. Journal of Vegetation Science, 2020, 31, 355-366.                                                                                | 2.2  | 20        |
| 22 | Not a melting pot: Plant species aggregate in their nonâ€native range. Global Ecology and Biogeography,<br>2020, 29, 482-490.                                                                                | 5.8  | 16        |
| 23 | Synchrony matters more than species richness in plant community stability at a global scale.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24345-24351.     | 7.1  | 113       |
| 24 | Coâ€introduction of native mycorrhizal fungi and plant seeds accelerates restoration of postâ€mining<br>landscapes. Journal of Applied Ecology, 2020, 57, 1741-1751.                                         | 4.0  | 33        |
| 25 | Different wheat cultivars exhibit variable responses to inoculation with arbuscular mycorrhizal fungi from organic and conventional farms. PLoS ONE, 2020, 15, e0233878.                                     | 2.5  | 29        |
| 26 | Directional trends in species composition over time can lead to a widespread overemphasis of yearâ€ŧoâ€year asynchrony. Journal of Vegetation Science, 2020, 31, 792-802.                                    | 2.2  | 15        |
| 27 | How mycorrhizal associations drive plant population and community biology. Science, 2020, 367, .                                                                                                             | 12.6 | 453       |
| 28 | Plant functional groups associate with distinct arbuscular mycorrhizal fungal communities. New<br>Phytologist, 2020, 226, 1117-1128.                                                                         | 7.3  | 69        |
| 29 | Disentangling the processes driving plant assemblages in mountain grasslands across spatial scales and environmental gradients. Journal of Ecology, 2019, 107, 265-278.                                      | 4.0  | 26        |
| 30 | Benefits of mycorrhizal inoculation to ecological restoration depend on plant functional type, restoration context and time. Fungal Ecology, 2019, 40, 140-149.                                              | 1.6  | 103       |
| 31 | DarkDivNet – A global research collaboration to explore the dark diversity of plant communities.<br>Journal of Vegetation Science, 2019, 30, 1039-1043.                                                      | 2.2  | 9         |
| 32 | Responses of plant community mycorrhization to anthropogenic influence depend on the habitat and mycorrhizal type. Oikos, 2019, 128, 1565-1575.                                                              | 2.7  | 4         |
| 33 | Arbuscular mycorrhizal fungal community composition determines the competitive response of two grassland forbs. PLoS ONE, 2019, 14, e0219527.                                                                | 2.5  | 8         |
| 34 | Misdiagnosis and uncritical use of plant mycorrhizal data are not the only elephants in the room.<br>New Phytologist, 2019, 224, 1415-1418.                                                                  | 7.3  | 32        |
| 35 | Research questions to facilitate the future development of European long-term ecosystem research<br>infrastructures: A horizon scanning exercise. Journal of Environmental Management, 2019, 250,<br>109479. | 7.8  | 13        |
| 36 | Facultative mycorrhizal associations promote plant naturalization worldwide. Ecosphere, 2019, 10, e02937.                                                                                                    | 2.2  | 16        |

| #  | Article                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Response of bryophytes to afforestation, increase of air humidity, and enrichment of soil diaspore bank. Forest Ecology and Management, 2019, 432, 64-72.                                     | 3.2  | 11        |
| 38 | Nonâ€random association patterns in a plant–mycorrhizal fungal network reveal host–symbiont<br>specificity. Molecular Ecology, 2019, 28, 365-378.                                             | 3.9  | 81        |
| 39 | Conceptual differences lead to divergent trait estimates in empirical and taxonomic approaches to plant mycorrhizal trait assignment. Mycorrhiza, 2019, 29, 1-11.                             | 2.8  | 28        |
| 40 | Anthropogenic disturbance equalizes diversity levels in arbuscular mycorrhizal fungal communities.<br>Global Change Biology, 2018, 24, 2649-2659.                                             | 9.5  | 32        |
| 41 | Effects of land use on arbuscular mycorrhizal fungal communities in Estonia. Mycorrhiza, 2018, 28, 259-268.                                                                                   | 2.8  | 24        |
| 42 | The role of plant mycorrhizal type and status in modulating the relationship between plant and arbuscular mycorrhizal fungal communities. New Phytologist, 2018, 220, 1236-1247.              | 7.3  | 68        |
| 43 | Ancient environmental DNA reveals shifts in dominant mutualisms during the lateÂQuaternary. Nature<br>Communications, 2018, 9, 139.                                                           | 12.8 | 24        |
| 44 | Niche differentiation and expansion of plant species are associated with mycorrhizal symbiosis.<br>Journal of Ecology, 2018, 106, 254-264.                                                    | 4.0  | 86        |
| 45 | Soybean cultivation supports a diverse arbuscular mycorrhizal fungal community in central<br>Argentina. Applied Soil Ecology, 2018, 124, 289-297.                                             | 4.3  | 22        |
| 46 | Widely distributed native and alien plant species differ in arbuscular mycorrhizal associations and related functional trait interactions. Ecography, 2018, 41, 1583-1593.                    | 4.5  | 9         |
| 47 | Eltonian niche width determines range expansion success in ectomycorrhizal conifers. New Phytologist, 2018, 220, 947-949.                                                                     | 7.3  | 6         |
| 48 | Microbial island biogeography: isolation shapes the life history characteristics but not diversity of root-symbiotic fungal communities. ISME Journal, 2018, 12, 2211-2224.                   | 9.8  | 55        |
| 49 | Arbuscular mycorrhizal fungal communities in tropical rain forest are resilient to slash-and-burn<br>agriculture. Journal of Tropical Ecology, 2018, 34, 186-199.                             | 1.1  | 17        |
| 50 | Plant mycorrhizal status, but not type, shifts with latitude and elevation in Europe. Global Ecology<br>and Biogeography, 2017, 26, 690-699.                                                  | 5.8  | 84        |
| 51 | Observed and dark diversity of alien plant species in Europe: estimating future invasion risk.<br>Biodiversity and Conservation, 2017, 26, 899-916.                                           | 2.6  | 15        |
| 52 | Historical biome distribution and recent human disturbance shape the diversity of arbuscular mycorrhizal fungi. New Phytologist, 2017, 216, 227-238.                                          | 7.3  | 66        |
| 53 | Increased sequencing depth does not increase captured diversity of arbuscular mycorrhizal fungi.<br>Mycorrhiza, 2017, 27, 761-773.                                                            | 2.8  | 58        |
| 54 | Arbuscular mycorrhizal fungal communities in forest plant roots are simultaneously shaped by host characteristics and canopy-mediated light availability. Plant and Soil, 2017, 410, 259-271. | 3.7  | 38        |

| #  | Article                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Mycorrhizal status helps explain invasion success of alien plant species. Ecology, 2017, 98, 92-102.                                                                                                                                                        | 3.2  | 77        |
| 56 | Global Patterns in Local and Dark Diversity, Species Pool Size and Community Completeness in Ectomycorrhizal Fungi. Ecological Studies, 2017, , 395-406.                                                                                                    | 1.2  | 9         |
| 57 | Macroecology of biodiversity: disentangling local and regional effects. New Phytologist, 2016, 211, 404-410.                                                                                                                                                | 7.3  | 63        |
| 58 | Sequence variation in nuclear ribosomal small subunit, internal transcribed spacer and large subunit<br>regions of <i>Rhizophagus irregularis</i> and <i>Gigaspora margarita</i> is high and<br>isolateâ€dependent. Molecular Ecology, 2016, 25, 2816-2832. | 3.9  | 64        |
| 59 | Secondary succession in alvar grasslands – do changes in vascular plant and cryptogam communities correspond?. Folia Geobotanica, 2016, 51, 285-296.                                                                                                        | 0.9  | 4         |
| 60 | Impact of alien pines on local arbuscular mycorrhizal fungal communities—evidence from two<br>continents. FEMS Microbiology Ecology, 2016, 92, fiw073.                                                                                                      | 2.7  | 41        |
| 61 | Symbiont dynamics during ecosystem succession: co-occurring plant and arbuscular mycorrhizal fungal communities. FEMS Microbiology Ecology, 2016, 92, fiw097.                                                                                               | 2.7  | 67        |
| 62 | Changes in dispersal and light capturing traits explain postâ€abandonment community change in<br>semiâ€natural grasslands. Journal of Vegetation Science, 2016, 27, 1222-1232.                                                                              | 2.2  | 21        |
| 63 | Arbuscular mycorrhizal fungi associating with roots of Alnus and Rubus in Europe and the Middle<br>East. Fungal Ecology, 2016, 24, 27-34.                                                                                                                   | 1.6  | 12        |
| 64 | The species pool concept as a framework for studying patterns of plant diversity. Journal of Vegetation Science, 2016, 27, 8-18.                                                                                                                            | 2.2  | 149       |
| 65 | Which randomizations detect convergence and divergence in traitâ€based community assembly? A test of commonly used null models. Journal of Vegetation Science, 2016, 27, 1275-1287.                                                                         | 2.2  | 73        |
| 66 | Dispersal of arbuscular mycorrhizal fungi and plants during succession. Acta Oecologica, 2016, 77, 128-135.                                                                                                                                                 | 1.1  | 41        |
| 67 | AM fungal communities inhabiting the roots of submerged aquatic plant Lobelia dortmanna are diverse and include a high proportion of novel taxa. Mycorrhiza, 2016, 26, 735-745.                                                                             | 2.8  | 28        |
| 68 | Distribution patterns of arbuscular mycorrhizal and non-mycorrhizal plant species in Germany.<br>Perspectives in Plant Ecology, Evolution and Systematics, 2016, 21, 78-88.                                                                                 | 2.7  | 30        |
| 69 | Response to Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richnessâ€. Science, 2016, 351, 457-457.                                                                                                       | 12.6 | 5         |
| 70 | Hierarchical assembly rules in arbuscular mycorrhizal (AM) fungal communities. Soil Biology and Biochemistry, 2016, 97, 63-70.                                                                                                                              | 8.8  | 73        |
| 71 | Plant community mycorrhization in temperate forests and grasslands: relations with edaphic properties and plant diversity. Journal of Vegetation Science, 2016, 27, 89-99.                                                                                  | 2.2  | 45        |
| 72 | Response to Comment on "Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism― Science, 2016, 351, 826-826.                                                                                                                | 12.6 | 17        |

| #  | Article                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Disjunct populations of <scp>E</scp> uropean vascular plant species keep the same climatic niches.<br>Global Ecology and Biogeography, 2015, 24, 1401-1412.                 | 5.8  | 39        |
| 74 | Response to Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness― Science, 2015, 350, 1177-1177.                       | 12.6 | 9         |
| 75 | Characteristic and derived diversity: implementing the species pool concept to quantify conservation condition of habitats. Diversity and Distributions, 2015, 21, 711-721. | 4.1  | 52        |
| 76 | Worldwide evidence of a unimodal relationship between productivity and plant species richness.<br>Science, 2015, 349, 302-305.                                              | 12.6 | 315       |
| 77 | Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science, 2015, 349, 970-973.                                                        | 12.6 | 644       |
| 78 | Agricultural Policies Exacerbate Honeybee Pollination Service Supply-Demand Mismatches Across<br>Europe. PLoS ONE, 2014, 9, e82996.                                         | 2.5  | 171       |
| 79 | Spatially-Explicit Estimation of Geographical Representation in Large-Scale Species Distribution Datasets. PLoS ONE, 2014, 9, e85306.                                       | 2.5  | 19        |
| 80 | Soil Nutrient Content Influences the Abundance of Soil Microbes but Not Plant Biomass at the<br>Small-Scale. PLoS ONE, 2014, 9, e91998.                                     | 2.5  | 60        |
| 81 | Seed bank and its restoration potential in <scp>E</scp> stonian flooded meadows. Applied Vegetation Science, 2014, 17, 262-273.                                             | 1.9  | 19        |
| 82 | Anthropogenic land use shapes the composition and phylogenetic structure of soil arbuscular mycorrhizal fungal communities. FEMS Microbiology Ecology, 2014, 90, 609-621.   | 2.7  | 138       |
| 83 | DNA-based detection and identification of Glomeromycota: the virtual taxonomy of environmental sequences. Botany, 2014, 92, 135-147.                                        | 1.0  | 170       |
| 84 | Predicting species' maximum dispersal distances from simple plant traits. Ecology, 2014, 95, 505-513.                                                                       | 3.2  | 207       |
| 85 | Root-colonizing and soil-borne communities of arbuscular mycorrhizal fungi in a temperate forest understorey. Botany, 2014, 92, 277-285.                                    | 1.0  | 86        |
| 86 | Which is a better predictor of plant traits: temperature or precipitation?. Journal of Vegetation Science, 2014, 25, 1167-1180.                                             | 2.2  | 323       |
| 87 | Plant and arbuscular mycorrhizal fungal ( <scp>AMF</scp> ) communities – which drives which?.<br>Journal of Vegetation Science, 2014, 25, 1133-1140.                        | 2.2  | 123       |
| 88 | Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass. New Phytologist, 2014, 203, 233-244.                              | 7.3  | 256       |
| 89 | Fifty thousand years of Arctic vegetation and megafaunal diet. Nature, 2014, 506, 47-51.                                                                                    | 27.8 | 505       |
| 90 | Vegetation patterns and their underlying processes: where are we now?. Journal of Vegetation Science, 2014, 25, 1113-1116.                                                  | 2.2  | 4         |

| #   | Article                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | The resilience of the forest field layer to anthropogenic disturbances depends on site productivity.<br>Canadian Journal of Forest Research, 2013, 43, 1040-1049.                                     | 1.7  | 8         |
| 92  | Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza, 2013, 23, 411-430.                                                              | 2.8  | 280       |
| 93  | Mycorrhizas in the Central European flora: relationships with plant life history traits and ecology.<br>Ecology, 2013, 94, 1389-1399.                                                                 | 3.2  | 150       |
| 94  | Impact of management on biodiversity-biomass relations in Estonian flooded meadows. Plant Ecology, 2013, 214, 845-856.                                                                                | 1.6  | 13        |
| 95  | Community Completeness: Linking Local and Dark Diversity within the Species Pool Concept. Folia<br>Geobotanica, 2013, 48, 307-317.                                                                    | 0.9  | 69        |
| 96  | Local temperatures inferred from plant communities suggest strong spatial buffering of climate<br>warming across <scp>N</scp> orthern <scp>E</scp> urope. Global Change Biology, 2013, 19, 1470-1481. | 9.5  | 200       |
| 97  | Arbuscular Mycorrhizal Fungal Networks Vary throughout the Growing Season and between<br>Successional Stages. PLoS ONE, 2013, 8, e83241.                                                              | 2.5  | 58        |
| 98  | Inter- and intrasporal nuclear ribosomal gene sequence variation within one isolate of arbuscular mycorrhizal fungus, Diversispora sp Symbiosis, 2012, 58, 135-147.                                   | 2.3  | 22        |
| 99  | Effects of arbuscular mycorrhiza on community composition and seedling recruitment in temperate forest understory. Basic and Applied Ecology, 2012, 13, 663-672.                                      | 2.7  | 27        |
| 100 | Functional species pool framework to test for biotic effects on community assembly. Ecology, 2012, 93, 2263-2273.                                                                                     | 3.2  | 205       |
| 101 | Bacterial community structure and its relationship to soil physico-chemical characteristics in alder stands with different management histories. Ecological Engineering, 2012, 49, 10-17.             | 3.6  | 63        |
| 102 | Temperate forest understorey species performance is altered by local arbuscular mycorrhizal fungal communities from stands of different successional stages. Plant and Soil, 2012, 356, 331-339.      | 3.7  | 32        |
| 103 | Ecological assembly rules in plant communities—approaches, patterns and prospects. Biological<br>Reviews, 2012, 87, 111-127.                                                                          | 10.4 | 717       |
| 104 | The localâ€regional species richness relationship: new perspectives on the nullâ€hypothesis. Oikos, 2012,<br>121, 321-326.                                                                            | 2.7  | 32        |
| 105 | On the use of weather data in ecological studies along altitudinal and latitudinal gradients. Oikos, 2012, 121, 3-19.                                                                                 | 2.7  | 135       |
| 106 | Biological Flora of the British Isles: <i>Dryopteris carthusiana</i> , <i>D.Âdilatata</i> and<br><i>D.Âexpansa</i> . Journal of Ecology, 2012, 100, 1039-1063.                                        | 4.0  | 16        |
| 107 | Restoration potential of the persistent soil seed bank in successional calcareous (alvar) grasslands<br>in <scp>E</scp> stonia. Applied Vegetation Science, 2012, 15, 208-218.                        | 1.9  | 61        |
| 108 | Restoration of flooded meadows in <scp>E</scp> stonia – vegetation changes and management indicators. Applied Vegetation Science, 2012, 15, 231-244.                                                  | 1.9  | 17        |

| #   | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Grassland diversity under changing productivity and the underlying mechanisms – results of a 10â€yr experiment. Journal of Vegetation Science, 2012, 23, 919-930.                                                          | 2.2  | 16        |
| 110 | Plant species richness belowground: higher richness and new patterns revealed by nextâ€generation sequencing. Molecular Ecology, 2012, 21, 2004-2016.                                                                      | 3.9  | 105       |
| 111 | Communities of Arbuscular Mycorrhizal Fungi Detected in Forest Soil Are Spatially Heterogeneous<br>but Do Not Vary throughout the Growing Season. PLoS ONE, 2012, 7, e41938.                                               | 2.5  | 150       |
| 112 | Dark diversity: shedding light on absent species. Trends in Ecology and Evolution, 2011, 26, 124-128.                                                                                                                      | 8.7  | 275       |
| 113 | Discerning the niche of dark diversity. Trends in Ecology and Evolution, 2011, 26, 265-266.                                                                                                                                | 8.7  | 9         |
| 114 | The formation of species pools: historical habitat abundance affects current local diversity. Global<br>Ecology and Biogeography, 2011, 20, 251-259.                                                                       | 5.8  | 87        |
| 115 | Alien plants associate with widespread generalist arbuscular mycorrhizal fungal taxa: evidence from<br>a continental-scale study using massively parallel 454 sequencing. Journal of Biogeography, 2011, 38,<br>1305-1317. | 3.0  | 137       |
| 116 | Forces that structure plant communities: quantifying the importance of the mycorrhizal symbiosis.<br>New Phytologist, 2011, 189, 366-370.                                                                                  | 7.3  | 149       |
| 117 | Arbuscular mycorrhizal fungal communities in plant roots are not random assemblages. FEMS<br>Microbiology Ecology, 2011, 78, 103-115.                                                                                      | 2.7  | 183       |
| 118 | An experimental facility for free air humidity manipulation (FAHM) can alter water flux through deciduous tree canopy. Environmental and Experimental Botany, 2011, 72, 432-438.                                           | 4.2  | 90        |
| 119 | Developing European conservation and mitigation tools for pollination services: approaches of the<br>STEP (Status and Trends of European Pollinators) project. Journal of Apicultural Research, 2011, 50,<br>152-164.      | 1.5  | 64        |
| 120 | The productivity–diversity relationship: varying aims and approaches. Ecology, 2010, 91, 2565-2567.                                                                                                                        | 3.2  | 22        |
| 121 | Changing conservation strategies in Europe: a framework integrating ecosystem services and dynamics. Biodiversity and Conservation, 2010, 19, 2963-2977.                                                                   | 2.6  | 83        |
| 122 | Identifying and prioritising services in European terrestrial and freshwater ecosystems. Biodiversity and Conservation, 2010, 19, 2791-2821.                                                                               | 2.6  | 146       |
| 123 | Ecosystem services and biodiversity conservation: concepts and a glossary. Biodiversity and Conservation, 2010, 19, 2773-2790.                                                                                             | 2.6  | 137       |
| 124 | Establishment of a cross-European field site network in the ALARM project for assessing large-scale changes in biodiversity. Environmental Monitoring and Assessment, 2010, 164, 337-348.                                  | 2.7  | 10        |
| 125 | Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biological Reviews, 2010, 85, 777-795.                                                                     | 10.4 | 259       |
| 126 | The online database Maarj <i>AM</i> reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytologist, 2010, 188, 223-241.                                             | 7.3  | 857       |

| #   | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Clonal mobility and its implications for spatio-temporal patterns of plant communities: what do we need to know next?. Oikos, 2010, 119, 802-806.                                                                 | 2.7 | 52        |
| 128 | Habitat fragmentation causes immediate and timeâ€delayed biodiversity loss at different trophic levels.<br>Ecology Letters, 2010, 13, 597-605.                                                                    | 6.4 | 620       |
| 129 | The effects of species pool, dispersal and competition on the diversity–productivity relationship.<br>Global Ecology and Biogeography, 2010, 19, 343-351.                                                         | 5.8 | 27        |
| 130 | Securing the Conservation of Biodiversity across Administrative Levels and Spatial, Temporal, and<br>Ecological Scales – Research Needs and Approaches of the <i>SCALES</i> Project. Gaia, 2010, 19, 187-193.     | 0.7 | 54        |
| 131 | Different factors govern the performance of three closely related and ecologically similar<br>Dryopteris species with contrastingly different abundance in a transplant experiment. Botany, 2010,<br>88, 961-969. | 1.0 | 8         |
| 132 | Significant effects of temperature on the reproductive output of the forest herb Anemone nemorosa<br>L Forest Ecology and Management, 2010, 259, 809-817.                                                         | 3.2 | 41        |
| 133 | Rooting theories of plant community ecology in microbial interactions. Trends in Ecology and Evolution, 2010, 25, 468-478.                                                                                        | 8.7 | 666       |
| 134 | An Assessment of Ecosystem Services and Biodiversity in Europe. Issues in Environmental Science and Technology, 2010, , 1-28.                                                                                     | 0.4 | 8         |
| 135 | Arbuscular Mycorrhizae and Plant–Plant Interactions. , 2010, , 79-98.                                                                                                                                             |     | 36        |
| 136 | Restoration Management of a Floodplain Meadow and Its Cost-Effectiveness — the Results of a 6-Year<br>Experiment. Annales Botanici Fennici, 2009, 46, 397-408.                                                    | 0.1 | 33        |
| 137 | Differential effect of arbuscular mycorrhizal fungal communities from ecosystems along management gradient on the growth of forest understorey plant species. Soil Biology and Biochemistry, 2009, 41, 2141-2146. | 8.8 | 49        |
| 138 | Understory plant diversity is related to higher variability of vegetative mobility of coexisting species.<br>Oecologia, 2009, 159, 355-361.                                                                       | 2.0 | 28        |
| 139 | Unravelling the effects of temperature, latitude and local environment on the reproduction of forest herbs. Global Ecology and Biogeography, 2009, 18, 641-651.                                                   | 5.8 | 44        |
| 140 | Past and Present Effectiveness of Protected Areas for Conservation of Naturally and Anthropogenically Rare Plant Species. Conservation Biology, 2009, 23, 750-757.                                                | 4.7 | 31        |
| 141 | Largeâ€scale parallel 454 sequencing reveals host ecological group specificity of arbuscular<br>mycorrhizal fungi in a boreonemoral forest. New Phytologist, 2009, 184, 424-437.                                  | 7.3 | 481       |
| 142 | Extinction debt: a challenge for biodiversity conservation. Trends in Ecology and Evolution, 2009, 24, 564-571.                                                                                                   | 8.7 | 1,053     |
| 143 | Alien species in a warmer world: risks and opportunities. Trends in Ecology and Evolution, 2009, 24, 686-693.                                                                                                     | 8.7 | 1,031     |
| 144 | Quantifying the Contribution of Organisms to the Provision of Ecosystem Services. BioScience, 2009, 59, 223-235.                                                                                                  | 4.9 | 312       |

| #   | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Differences In Post-Emergence Growth Of Three Fern Species Could Help Explain Their Varying Local<br>Abundance. American Fern Journal, 2009, 99, 307-322.                                                       | 0.3 | 4         |
| 146 | Indicators for biodiversity in agricultural landscapes: a panâ€European study. Journal of Applied<br>Ecology, 2008, 45, 141-150.                                                                                | 4.0 | 530       |
| 147 | Conservation of the Endemic Fern Lineage Diellia (Aspleniaceae) on the Hawaiian Islands: Can<br>Population Structure Indicate Regional Dynamics and Endangering Factors?. Folia Geobotanica, 2008,<br>43, 3-18. | 0.9 | 17        |
| 148 | Plant functional group composition and largeâ€scale species richness in European agricultural<br>landscapes. Journal of Vegetation Science, 2008, 19, 3-14.                                                     | 2.2 | 111       |
| 149 | What is the role of local landscape structure in the vegetation composition of field boundaries?.<br>Applied Vegetation Science, 2008, 11, 375-386.                                                             | 1.9 | 44        |
| 150 | Plant diversity in a calcareous wooded meadow – The significance of management continuity. Journal of Vegetation Science, 2008, 19, 475-484.                                                                    | 2.2 | 74        |
| 151 | High diversity of arbuscular mycorrhizal fungi in a boreal herbâ€rich coniferous forest. New<br>Phytologist, 2008, 179, 867-876.                                                                                | 7.3 | 149       |
| 152 | Prediction uncertainty of environmental change effects on temperate European biodiversity. Ecology<br>Letters, 2008, 11, 235-244.                                                                               | 6.4 | 79        |
| 153 | What determines the relationship between plant diversity and habitat productivity?. Global Ecology and Biogeography, 2008, 17, 679-684.                                                                         | 5.8 | 69        |
| 154 | Electroactive polymers as a novel actuator technology for lighter-than-air vehicles. , 2007, , .                                                                                                                |     | 10        |
| 155 | Spatial pattern and species richness of boreonemoral forest understorey and its determinants—A comparison of differently managed forests. Forest Ecology and Management, 2007, 250, 64-70.                      | 3.2 | 47        |
| 156 | Soil seed bank and vegetation in mixed coniferous forest stands with different disturbance regimes.<br>Forest Ecology and Management, 2007, 250, 71-76.                                                         | 3.2 | 56        |
| 157 | Grassland diversity related to the Late Iron Age human population density. Journal of Ecology, 2007, 95, 574-582.                                                                                               | 4.0 | 95        |
| 158 | Effects of landscape structure and landâ€use intensity on similarity of plant and animal communities.<br>Global Ecology and Biogeography, 2007, 16, 774-787.                                                    | 5.8 | 151       |
| 159 | Dispersal limitation may result in the unimodal productivity-diversity relationship: a new explanation for a general pattern. Journal of Ecology, 2007, 95, 90-94.                                              | 4.0 | 69        |
| 160 | Monitoring of Biological Diversity: a Common-Ground Approach. Conservation Biology, 2007, 21, 313-317.                                                                                                          | 4.7 | 38        |
| 161 | CONTRASTING PLANT PRODUCTIVITY–DIVERSITY RELATIONSHIPS ACROSS LATITUDE: THE ROLE OF EVOLUTIONARY HISTORY. Ecology, 2007, 88, 1091-1097.                                                                         | 3.2 | 145       |
| 162 | Novel ecosystems: theoretical and management aspects of the new ecological world order. Global Ecology and Biogeography, 2006, 15, 1-7.                                                                         | 5.8 | 1,528     |

| #   | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Biodiversity and ecosystem functioning: It is time for dispersal experiments. Journal of Vegetation Science, 2006, 17, 543-547.                                                                                                                                 | 2.2 | 40        |
| 164 | Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. Journal of Ecology, 2006, 94, 778-790.                                                                                                       | 4.0 | 470       |
| 165 | Biodiversity and ecosystem functioning: It is time for dispersal experiments. Journal of Vegetation Science, 2006, 17, 543.                                                                                                                                     | 2.2 | 5         |
| 166 | Alarm: Assessing Large-scale environmental Risks for biodiversity with tested Methods. Gaia, 2005, 14, 69-72.                                                                                                                                                   | 0.7 | 160       |
| 167 | Diversity and dispersal — Can the link be approached experimentally?. Folia Geobotanica, 2005, 40, 3-11.                                                                                                                                                        | 0.9 | 36        |
| 168 | Can long-distance dispersal shape the local and regional species pool?. Folia Geobotanica, 2005, 40, 35-44.                                                                                                                                                     | 0.9 | 8         |
| 169 | Threatened herbaceous species dependent on moderate forest disturbances: A neglected target for ecosystem-based silviculture. Scandinavian Journal of Forest Research, 2005, 20, 145-152.                                                                       | 1.4 | 25        |
| 170 | Grouping and prioritization of vascular plant species for conservation: combining natural rarity and management need. Biological Conservation, 2005, 123, 271-278.                                                                                              | 4.1 | 84        |
| 171 | Population stage structure of Hawaiian endemic fern taxa of Diellia (Aspleniaceae): implications for monitoring and regional dynamics. Canadian Journal of Botany, 2004, 82, 1438-1445.                                                                         | 1.1 | 16        |
| 172 | Do different competitive abilities of three fern species explain their different regional abundances?.<br>Journal of Vegetation Science, 2004, 15, 351-356.                                                                                                     | 2.2 | 23        |
| 173 | Native arbuscular mycorrhizal fungal communities differentially influence the seedling performance of rare and common Pulsatilla species. Functional Ecology, 2004, 18, 554-562.                                                                                | 3.6 | 93        |
| 174 | Moisture conditions and the presence of bryophytes determine fescue species abundance in a dry calcareous grassland. Oecologia, 2004, 138, 293-299.                                                                                                             | 2.0 | 38        |
| 175 | Divergent arbuscular mycorrhizal fungal communities colonize roots of Pulsatilla spp. in boreal<br>Scots pine forest and grassland soils. New Phytologist, 2003, 160, 581-593.                                                                                  | 7.3 | 149       |
| 176 | Responses of a rare (Viola elatior) and a common (Viola mirabilis) congeneric species to different<br>management conditions in grassland — is different light competition ability responsible for different<br>abundances?. Acta Oecologica, 2003, 24, 169-174. | 1.1 | 26        |
| 177 | THE ROLE OF THE SEED BANK IN GAP REGENERATION IN A CALCAREOUS GRASSLAND COMMUNITY. Ecology, 2002, 83, 1017-1025.                                                                                                                                                | 3.2 | 169       |
| 178 | Studying plant competition: from root biomass to general aims. Journal of Ecology, 2002, 90, 578-580.                                                                                                                                                           | 4.0 | 31        |
| 179 | Small-scale turnover in a calcareous grassland, its pattern and components. Journal of Vegetation Science, 2002, 13, 199.                                                                                                                                       | 2.2 | 9         |
| 180 | Are invaders disturbance-limited? Conservation of mountain grasslands in Central Argentina. Applied<br>Vegetation Science, 2002, 5, 195.                                                                                                                        | 1.9 | 6         |

| #   | Article                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Title is missing!. Plant Ecology, 2001, 157, 205-213.                                                                                                                        | 1.6 | 35        |
| 182 | Species richness limitations in productive and oligotrophic plant communities. Oikos, 2000, 90, 191-193.                                                                     | 2.7 | 54        |
| 183 | Mycorrhiza, vegetative mobility and responses to disturbance of alpine plants in the northwestern caucasus. Folia Geobotanica, 2000, 35, 1-11.                               | 0.9 | 30        |
| 184 | Is Small-Scale Species Richness Limited by Seed Availability or Microsite Availability?. Ecology, 2000, 81, 3274.                                                            | 3.2 | 17        |
| 185 | Small-scale plant species richness in calcareous grasslands determined by the species pool, community age and shoot density. Ecography, 1999, 22, 153-159.                   | 4.5 | 111       |
| 186 | Title is missing!. Landscape Ecology, 1999, 14, 187-196.                                                                                                                     | 4.2 | 102       |
| 187 | Alvar grasslands in Estonia: variation in species composition and community structure. Journal of Vegetation Science, 1999, 10, 561-570.                                     | 2.2 | 87        |
| 188 | Small-scale dynamics of plant communities in an experimentally polluted and fungicide-treated subarctic birch-pine forest. Acta Oecologica, 1999, 20, 29-37.                 | 1.1 | 12        |
| 189 | Is Species Richness Dependent on the Neighbouring Stands? An Analysis of the Community Patterns in<br>Mountain Grasslands of Central Argentina. Oikos, 1999, 87, 346.        | 2.7 | 50        |
| 190 | Species pool: the concept, its determination and significance for community restoration. Applied Vegetation Science, 1998, 1, 55-66.                                         | 1.9 | 305       |
| 191 | Environmental relationships of vegetation patterns in saltmarshes of central Argentina. Folia<br>Geobotanica, 1998, 33, 133-145.                                             | 0.9 | 35        |
| 192 | Restoration of species-rich limestone grassland communities from overgrown land: the importance of propagule availability. Ecological Engineering, 1998, 10, 275-286.        | 3.6 | 98        |
| 193 | Soil seed bank composition in different successional stages of a species rich wooded meadow in<br>Laelatu, western Estonia. Acta Oecologica, 1998, 19, 175-180.              | 1.1 | 67        |
| 194 | Can arbuscular mycorrhiza change the effect of root competition between conspecific plants of different ages?. Canadian Journal of Botany, 1998, 76, 613-619.                | 1.1 | 14        |
| 195 | Plant Coexistence in the Interactive Environment: Arbuscular Mycorrhiza Should Not Be out of Mind.<br>Oikos, 1997, 78, 202.                                                  | 2.7 | 57        |
| 196 | The relative of species pools in determining plant species richness: an alternative explanation of species coexistence?. Trends in Ecology and Evolution, 1997, 12, 266-269. | 8.7 | 837       |
| 197 | Secondary succession and summer herbivory in a subarctic grassland: community structure and diversity. Ecography, 1997, 20, 595-604.                                         | 4.5 | 7         |
| 198 | The seed bank in an estonian calcareous grassland: Comparison of different successional stages. Folia<br>Geobotanica, 1997, 32, 1-14.                                        | 0.9 | 40        |

| #   | Article                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Why do we need permanent plots in the study of long-term vegetation dynamics?. Journal of<br>Vegetation Science, 1996, 7, 147-156.                                                  | 2.2 | 270       |
| 200 | The Species Pool and Its Relation to Species Richness: Evidence from Estonian Plant Communities.<br>Oikos, 1996, 75, 111.                                                           | 2.7 | 404       |
| 201 | Effect of arbuscular mycorrhiza on inter- and intraspecific competition of two grassland species.<br>Oecologia, 1996, 108, 79-84.                                                   | 2.0 | 118       |
| 202 | The dynamics of species richness in an experimentally restored calcareous grassland. Journal of Vegetation Science, 1996, 7, 203-210.                                               | 2.2 | 86        |
| 203 | Small-scale dynamics and species richness in successional alvar plant communities. Ecography, 1995, 18, 83-90.                                                                      | 4.5 | 40        |
| 204 | Interspecific competition and arbuscular mycorrhiza: Importance for the coexistence of two calcareous grassland species. Folia Geobotanica Et Phytotaxonomica, 1995, 30, 223-230.   | 0.4 | 26        |
| 205 | Vegetation structure and species coexistence. Folia Geobotanica Et Phytotaxonomica, 1994, 29, 433-437.                                                                              | 0.4 | 4         |
| 206 | An experimental test of diversity maintenance mechanisms, by a species removal experiment in a species-rich wooded meadow. Folia Geobotanica Et Phytotaxonomica, 1994, 29, 449-457. | 0.4 | 28        |
| 207 | Change in pattern diversity during secondary succession in Estonian forests. Journal of Vegetation Science, 1993, 4, 489-498.                                                       | 2.2 | 56        |
| 208 | Plant Species Coexistence: The Role of Historical, Evolutionary and Ecological Factors. Oikos, 1992, 65, 314.                                                                       | 2.7 | 269       |
| 209 | Formation and succession of alvar communities in the Baltic land uplift area. Nordic Journal of Botany, 1992, 12, 249-256.                                                          | 0.5 | 22        |
| 210 | High species richness in an Estonian wooded meadow. Journal of Vegetation Science, 1991, 2, 715-718.                                                                                | 2.2 | 252       |
| 211 | A new null hypothesis for measuring the degree of plant community organization. Plant Ecology, 1988, 75, 17-25.                                                                     | 1.2 | 19        |
| 212 | Autogenic succession in boreal mires — A review. Folia Geobotanica Et Phytotaxonomica, 1988, 23, 417-445.                                                                           | 0.4 | 56        |