Seulki song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/141623/publications.pdf

Version: 2024-02-01

471509 642732 1,451 23 17 23 h-index citations g-index papers 24 24 24 2680 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Selective Defect Passivation and Topographical Control of 4â€Dimethylaminopyridine at Grain Boundary for Efficient and Stable Planar Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2003382.	19.5	82
2	A Facile Surface Passivation Enables Thermally Stable and Efficient Planar Perovskite Solar Cells Using a Novel IDTTâ€Based Small Molecule Additive. Advanced Energy Materials, 2021, 11, 2003829.	19.5	72
3	Perspective: approaches for layers above the absorber in perovskite solar cells for semitransparent and tandem applications. Materials Today Energy, 2021, 21, 100729.	4.7	5
4	Novel cathode interfacial layer using creatine for enhancing the photovoltaic properties of perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 21721-21728.	10.3	28
5	Recent Progress and Challenges of Electron Transport Layers in Organic–Inorganic Perovskite Solar Cells. Energies, 2020, 13, 5572.	3.1	66
6	Solar Cells: pâ€Type Cul Islands on TiO ₂ Electron Transport Layer for a Highly Efficient Planarâ€Perovskite Solar Cell with Negligible Hysteresis (Adv. Energy Mater. 5/2018). Advanced Energy Materials, 2018, 8, 1870020.	19.5	8
7	Surface modified fullerene electron transport layers for stable and reproducible flexible perovskite solar cells. Nano Energy, 2018, 49, 324-332.	16.0	52
8	pâ€Type Cul Islands on TiO ₂ Electron Transport Layer for a Highly Efficient Planarâ€Perovskite Solar Cell with Negligible Hysteresis. Advanced Energy Materials, 2018, 8, 1702235.	19.5	117
9	Simple post annealing-free method for fabricating uniform, large grain-sized, and highly crystalline perovskite films. Nano Energy, 2017, 34, 181-187.	16.0	50
10	Systematically Optimized Bilayered Electron Transport Layer for Highly Efficient Planar Perovskite Solar Cells ($\hat{l} = 21.1\%$). ACS Energy Letters, 2017, 2, 2667-2673.	17.4	180
11	Green-Solvent-Processable, Dopant-Free Hole-Transporting Materials for Robust and Efficient Perovskite Solar Cells. Journal of the American Chemical Society, 2017, 139, 12175-12181.	13.7	212
12	Inducing swift nucleation morphology control for efficient planar perovskite solar cells by hot-air quenching. Journal of Materials Chemistry A, 2017, 5, 3812-3818.	10.3	61
13	Interfacial electron accumulation for efficient homo-junction perovskite solar cells. Nano Energy, 2016, 28, 269-276.	16.0	63
14	Well-Defined Nanostructured, Single-Crystalline TiO ₂ Electron Transport Layer for Efficient Planar Perovskite Solar Cells. ACS Nano, 2016, 10, 6029-6036.	14.6	196
15	Cross-Linkable Fullerene Derivatives for Solution-Processed n–i–p Perovskite Solar Cells. ACS Energy Letters, 2016, 1, 648-653.	17.4	67
16	Suppressing charge recombination by incorporating 3,6â€carbazole into poly[9â€(heptadecanâ€9â€yl)â€9 <i>H</i> à€carbazoleâ€2,7â€diylâ€altâ€(5,6â€bisâ€(octyloxy)â€4,7â€di(thiop Journal of Polymer Science Part A, 2014, 52, 2047-2056.	bhe മâ€2 â€	≣yl)benzo[1,2,.
17	In situ modulation of the vertical distribution in a blend of P3HT and PC60BM via the addition of a composition gradient inducer. Nanoscale, 2014, 6, 2440.	5.6	33
18	Dye-Sensitized Solar Cells Employing Doubly or Singly Open-Ended TiO ₂ Nanotube Arrays: Structural Geometry and Charge Transport. ACS Applied Materials & Structural Geometry and Charge Transport. ACS Applied Materials & Structural Geometry and Charge Transport. ACS Applied Materials & Structural Geometry and Charge Transport. ACS Applied Materials & Structural Geometry and Charge Transport. ACS Applied Materials & Structural Geometry and Charge Transport.	8.0	21

SEULKI SONG

#	Article	IF	CITATION
19	Tunable Nanoporous Network Polymer Nanocomposites having Size-Selective Ion Transfer for Dye-Sensitized Solar Cells (Adv. Energy Mater. 2/2013). Advanced Energy Materials, 2013, 3, 183-183.	19.5	4
20	Lowâ€bandgap quinoxalineâ€based D–Aâ€type copolymers: Synthesis, characterization, and photovoltaic properties. Journal of Polymer Science Part A, 2013, 51, 372-382.	2.3	19
21	A novel quasi-solid state dye-sensitized solar cell fabricated using a multifunctional network polymer membrane electrolyte. Energy and Environmental Science, 2013, 6, 1559.	30.8	48
22	Tunable Nanoporous Network Polymer Nanocomposites having Sizeâ€Selective Ion Transfer for Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2013, 3, 184-192.	19.5	18
23	Stable Dyeâ€Sensitized Solar Cells by Encapsulation of N719â€Sensitized TiO ₂ Electrodes Using Surfaceâ€Induced Crossâ€Linking Polymerization. Advanced Energy Materials, 2012, 2, 219-224.	19.5	43