
Takashi Kaneko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1416043/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel highly efficient <i>absolute</i> optical resolution method by serial combination of two asymmetric reactions from acetylene monomers having racemic substituents. Chirality, 2022, 34, 450-461.	2.6	5
2	Absolute asymmetric polymerizations in solution needing no physical chiral source. Polymer, 2022, 245, 124673.	3.8	3
3	Synthesis and Oxygen Permeation of Well-Defined Multistranded Copolymers from Monomers Having Two Different Polymerizable Groups. Macromolecules, 2022, 55, 5699-5710.	4.8	0
4	Synthesis and oxygen permselectivity of multi-stranded graft copolymers. Polymer, 2022, 255, 125092.	3.8	0
5	Improved oxygen permeation of a multi-stranded network two-dimensional polymer synthesized by three-step polymerizations of a novel monomer bearing three different polymerizable groups followed by photoexfoliation. Polymer, 2021, 228, 123857.	3.8	1
6	Improvement of oxygen permselectivity of a rigid helical polyphenylacetylene: Effect of flexible groups, degree of polymerization, composites, thickness, orientation, and network formation. Polymer, 2021, 228, 123900.	3.8	1
7	Macromolecular Design for Oxygen/Nitrogen Permselective Membranes—Top-Performing Polymers in 2020—. Polymers, 2021, 13, 3012.	4.5	13
8	Synthesis and Oxygen Permeation of Novel Alternating Copolymers Containing Disiloxane and Imido Groups by Hydrosilylation Polyaddition. Chemistry Letters, 2021, 50, 1617-1619.	1.3	1
9	Synthesis, in-situ membrane preparation, and good gas permselectivity of insoluble poly(substituted) Tj ETQq1 122081.	1 0.784314 3.8	rgBT /Overl 4
10	Synthesis and Permselectivity of a <i>Soluble</i> Two-Dimensional Macromolecular Sheet by Solid–Solid Interfacial Polycondensation Followed by Chemical Exfoliation. , 2020, 2, 1121-1128.		8
11	Synthesis of Cis-Cisoid or Cis-Transoid Poly(Phenyl-Acetylene)s Having One or Two Carbamate Groups as Oxygen Permeation Membrane Materials. Membranes, 2020, 10, 199.	3.0	3
12	Synthesis of Well-Defined Chiral Oligopinanylsiloxane Graft Copoly(phenylacetylene)s Using the Macromonomer Method and Their Enantioselective Permeability. ACS Applied Polymer Materials, 2020, 2, 853-861.	4.4	8
13	Antiparallel Arrangement of 2,7-Substituted 9,10-Bis(phenylethynyl)anthracene Assisted by Hydrogen Bonding of Terminal Units. Bulletin of the Chemical Society of Japan, 2019, 92, 1672-1678.	3.2	0
14	New Synthetic Methods of Novel Nanoporous Polycondensates and Excellent Oxygen Permselectivity of Their Composite Membranes. Nanomaterials, 2019, 9, 859.	4.1	6
15	Simultaneous improvement of permeability and selectivity in enantioselective permeation through solid chiral membranes from a newly synthesized one-handed helical polyphenylacetylene with aldehyde pendant groups by enantioselective reaction. Polymer, 2019, 171, 45-49.	3.8	11
16	Helix-Sense-Selective Polymerization of Phenylacetylenes Having a Porphyrin and a Zinc-Porphyrin Group: One-Handed Helical Arrangement of Porphyrin Pendants. Polymers, 2019, 11, 274.	4.5	3
17	Helix-sense-selective Polymerization of 3,5-bis(hydroxymethyl)phenylacetylene Rigidly Bearing Galvinoxyl Residues and Their Chiroptical Properties. Polymers, 2019, 11, 1877.	4.5	4
18	Solvent-tuned dual emission of a helical poly[3,5-bis(hydroxymethyl)phenylacetylene] connected with a ï€-conjugated chromophore. Polymer Journal, 2018, 50, 533-537.	2.7	3

#	Article	IF	CITATIONS
19	Synthesis and oxygen permeation of novel well-defined homopoly(phenylacetylene)s with different sizes and shapes of oligosiloxanyl side groups. Journal of Membrane Science, 2018, 561, 26-38.	8.2	13
20	Synthesis of Two Wellâ€Defined Quadrupleâ€Stranded Copolymers having Two Kinds of Backbones by Postpolymerization of a Helical Template Polymer. Macromolecular Rapid Communications, 2018, 39, 1700556.	3.9	3
21	Enhanced performances of enantioselective permeation through one-handed helical polymer membranes by enantioselective imine exchange reaction with permeants and by partially decomposed reaction of the membrane. Polymer, 2018, 156, 39-43.	3.8	13
22	Synthesis and Ultrahigh Oxygen Permeability of Silicon-containing <i>ciscisoidal</i> Poly(substituted phenylacetylene)s. Chemistry Letters, 2018, 47, 1314-1317.	1.3	8
23	Synthesis and oxygen permeability of novel graft copolymers consisting of a polyphenylacetylene backbone and long oligosiloxane grafts from phenylacetylene-type macromonomers. Polymer, 2018, 156, 66-70.	3.8	10
24	Ultrahigh oxygen permeability of chemically-modified membranes of novel (co)polyacetylenes having a photodegradative backbone and crosslinkable side chains. Polymer, 2018, 149, 117-123.	3.8	1
25	Synthesis of soluble oligsiloxane-end-capped hyperbranched polyazomethine and their application to CO2/N2 separation membranes. Designed Monomers and Polymers, 2018, 21, 99-104.	1.6	5
26	Helix-Sense-Selective Polymerization of Achiral Phenylacetylenes and Unique Properties of the Resulting Cis-cisoidal Polymers. Polymer Reviews, 2017, 57, 89-118.	10.9	49
27	Oxygen Permselectivities of Novel Multi-bridged Copolymers Synthesized by Imine Metathesis between N-Imines and C-Imines in the Pendant Groups of Two Poly(substituted acetylene)s. Chemistry Letters, 2017, 46, 401-404.	1.3	3
28	Transformer of Achiral Amounts to Chirality: Double Reversal of Enantioselectivity Using a Single Cocatalyst in Asymmetric Polymerization. Macromolecules, 2017, 50, 7468-7474.	4.8	10
29	A New Analysis Method for Quantitative Determination of Triads of Copoly(substituted acetylene) Backbones by Highly Selective Photocyclic Aromatization. Chemistry Letters, 2017, 46, 1608-1611.	1.3	3
30	Subnanoporous Highly Oxygen Permselective Membranes from Poly(conjugated hyperbranched) Tj ETQqO 0 0 rg 1,3-Bis(silyl)phenylacetylene Using a Single Rh Catalytic System: Control of Their Structures and Permselectivities. Macromolecules, 2017, 50, 7121-7136.	gBT /Overlo 4.8	ock 10 Tf 50 3 11
31	Oxygen permselectivities through supramolecular polymer membranes prepared by highly selective photocyclic aromatization ofÂpoly(substituted acetylene). Polymer, 2017, 127, 232-235.	3.8	6
32	Fluorescence emission enhancement of poly(phenylacetylene) via thermal annealing. Molecular Crystals and Liquid Crystals, 2017, 645, 50-57.	0.9	4
33	Synthesis of One-Handed Helical Block Copoly(substituted acetylene)s Consisting of Dynamic <i>cis-transoidal</i> and Static <i>cis-cisoidal</i> Block: Chiral Teleinduction in Helix-Sense-Selective Polymerization Using a Chiral Living Polymer as an Initiator. ACS Macro Letters, 2016, 5, 1381-1385.	4.8	37
34	Influence of a hydrodynamic environment on chain rigidity, liquid crystallinity, absorptivity, and photoluminescence of hydrogen-bonding-assisted helical poly(phenylacetylene). RSC Advances, 2016, 6, 36661-36666.	3.6	7
35	High Oxygen Permselectivity through a Membrane from Novel Soluble Imido-bridged Ladder Polysiloxane. Chemistry Letters, 2016, 45, 424-426.	1.3	5
36	Synthesis and oxygen permselectivity of copoly(substituted acetylene)s with bulky fused polycyclic aliphatic groups. Polymer, 2016, 99, 695-703.	3.8	3

#	Article	IF	CITATIONS
37	Highly Selective Photocyclic Aromatization (SCAT)-GPC Method for Quantitative Determination of Microstructures of Copoly(substituted acetylenes) Backbone. Chemistry Letters, 2016, 45, 813-815.	1.3	5
38	Selective Polymerization of Dimethylsilylphenylacetylene and the Gas Permselectivity of the Resulting Polymer Membranes. Chemistry Letters, 2015, 44, 182-184.	1.3	5
39	Helical Conformation Stability of Poly[3,5-bis(hydroxymethyl)phenylacetylene]s Depending on the Length of Their Rigid and Linear ï€-Conjugated Side Groups. Chemistry Letters, 2015, 44, 1413-1415.	1.3	7
40	Quantitative Introduction of Perfluoroalkyl Groups to Poly(diphenylacetylene) Membranes via Three-step Membrane Reaction Including Click Reaction and Their Gas Permeability. Chemistry Letters, 2015, 44, 1679-1681.	1.3	2
41	Highly Efficient Helix-sense-selective Polymerization of an Achiral Phenylacetylene Having a Bulky Group. Chemistry Letters, 2015, 44, 1777-1779.	1.3	1
42	Synthesis of a Fluorineâ€Containing Cisâ€Cisoidal Oneâ€Handed Helical Polyphenylacetylene and Application of Highly Selective Photocyclic Aromatization Product on Oxygen Permselective Membrane. Chirality, 2015, 27, 459-463.	2.6	8
43	A Chiral Supramolecular Polymer Membrane with no Chiral Substituents by Highly Selective Photocyclic Aromatization of a Oneâ€Handed Helical <i>Cis</i> à€ <i>cisoidal</i> Polyphenylacetylene. Macromolecular Chemistry and Physics, 2015, 216, 530-537.	2.2	14
44	Two-Dimensional and Related Polymers: Concepts, Synthesis, and their Potential Application as Separation Membrane Materials. Polymer Reviews, 2015, 55, 57-89.	10.9	48
45	Synthesis and oxygen permeation of novel polymers of phenylacetylenes having two hydroxyl groups via different lengths of spacers. Polymer, 2015, 56, 199-206.	3.8	19
46	Helix-Sense-Selective Polymerization of Novel Substituted Acetylenes Having a Rigid Planar Imino-Linked Substituent and Quantitative Polymer Reactions in the Optically Active Polymer Membranes. Kobunshi Ronbunshu, 2014, 71, 372-381.	0.2	3
47	Facile synthesis of five 2D surface modifiers by highly selective photocyclic aromatization and efficient enhancement of oxygen permselectivities of three polymer membranes by surface modification using a small amount of the 2D surface modifiers. Polymer, 2014, 55, 1384-1396.	3.8	14
48	Synthesis of sequential poly(1,3-phenyleneethynylene)-based polyradicals and through-space antiferromagnetic interaction of their solid state. Polymer, 2014, 55, 1097-1102.	3.8	7
49	Helix-sense-selective Degradation of Poly[4-dodecyloxy-3,5-bis(hydroxymethyl)phenylacetylene] by Selective Photocyclic Aromatization (SCAT) Using Circularly Polarized Light (CPL). Chemistry Letters, 2014, 43, 1476-1477.	1.3	15
50	Synthesis of Two-dimensional Polymer for Molecular-sieve Membranes. Membrane, 2014, 39, 118-131.	0.0	0
51	Top-Down Preparation of Self-Supporting Supramolecular Polymeric Membranes Using Highly Selective Photocyclic Aromatization of Cis–Cisoid Helical Poly(phenylacetylene)s in the Membrane State. Journal of the American Chemical Society, 2013, 135, 602-605.	13.7	112
52	Living-like helix-sense-selective polymerization of an achiral substituted acetylene having bulky substituents. Polymer, 2013, 54, 1729-1733.	3.8	14
53	Flexible self-supporting supramolecular polymeric membranes consisting of 1,3,5-trisubstituted benzene derivatives synthesized by highly selective photocyclic aromatization of helical poly(phenylacetylene)s in the membrane state. Polymer, 2013, 54, 4431-4435.	3.8	20
54	Folding-Induced Through-Space Magnetic Interaction of Poly(1,3-phenyleneethynylene)-Based Polyradicals. Macromolecules, 2013, 46, 2583-2589.	4.8	14

#	Article	IF	CITATIONS
55	Excellent oxygen permselectivity of fluorine-containing poly(trimethylsilyldiphenylacetylene)s prepared by direct alkylation of perfluorodecyl groups in membrane state. Polymer, 2013, 54, 2231-2234.	3.8	15
56	Helix-sense-selective Polymerization of 3,5-Bis(hydroxymethyl)phenylacetylene Connected with a Rigid and π-Conjugated Substituent. Chemistry Letters, 2013, 42, 1087-1089.	1.3	14
57	Facile Synthesis of an Amphiphilic 1,3,5-Trisubstituted Benzene as a Novel Surface Modifier by Selective Photocyclic Aromatization and Efficient Improvement of Oxygen Permselectivity by the Addition of the Surface Modifier. Chemistry Letters, 2013, 42, 1090-1092.	1.3	9
58	Helix-sense-selective Polymerization of Substituted Acetylenes by Using an Isolated Rh Chiral Initiator with an Amino Acid Ligand. Chemistry Letters, 2013, 42, 430-432.	1.3	19
59	Transformation from preformed racemic helical poly(phenylacetylene)s to the enantioenriched helical polymers by chiral solvation, followed by removal of the chiral solvents. Polymer Journal, 2012, 44, 327-333.	2.7	12
60	Enhanced Gas Permselectivity of Copoly(Hyperbranched Macromonomer) Synthesized by One-pot Simultaneous Copolymerization of Dimethylsilyl-containing Phenylacetylenes. Chemistry Letters, 2012, 41, 1462-1464.	1.3	15
61	Chiral Teleinduction in Asymmetric Polymerization of 3,5-Bis(hydroxymethyl)phenylacetylene Having a Chiral Group via a Very Long and Rigid Spacer at 4-Position. Chemistry Letters, 2012, 41, 244-246.	1.3	8
62	Pseudo helix-sense-selective polymerisation of achiral substituted acetylenes. Chemical Communications, 2012, 48, 4761.	4.1	34
63	Helix-Sense-Selective Polymerization of Achiral Phenylacetylenes with Two <i>N</i> -Alkylamide Groups to Generate the One-Handed Helical Polymers Stabilized by Intramolecular Hydrogen Bonds. ACS Macro Letters, 2012, 1, 1258-1261.	4.8	58
64	Two modes of asymmetric polymerization of phenylacetylenes having an <scp>L</scp> â€amino alcohol residue and two hydroxy groups. Journal of Polymer Science Part A, 2012, 50, 5134-5143.	2.3	10
65	Polymerization of Phenylacetylene-Based Monodendrons with Alkoxy Peripheral Groups and Oxygen/Nitrogen Permeation Behavior of Their Membranes. International Journal of Polymer Science, 2012, 2012, 1-8.	2.7	2
66	Reversible Photogeneration of a Stable Chiral Radical-Pair from a Fast Photochromic Molecule. Journal of Physical Chemistry Letters, 2011, 2, 2680-2682.	4.6	19
67	New Achiral Phenylacetylene Monomers Having an Oligosiloxanyl Group Most Suitable for Helix-Sense-Selective Polymerization and for Obtaining Good Optical Resolution Membrane Materials. Macromolecules, 2010, 43, 9268-9276.	4.8	59
68	Phenyleneethynylene Macrocycleâ€Fused Phenylacetylene Monomers: Synthesis and Polymerization. Macromolecular Chemistry and Physics, 2009, 210, 22-36.	2.2	10
69	Helixâ€Senseâ€Selective Polymerization of Achiral Bis(hydroxymethyl)phenylacetylenes Bearing Alkyl Groups of Different Lengths. Macromolecular Chemistry and Physics, 2009, 210, 717-727.	2.2	55
70	Optically active helical structure and magnetic interaction of poly(phenylacetylene)-based polyradicals. Polyhedron, 2009, 28, 1927-1929.	2.2	13
71	Synthesis of an optically active poly(aryleneethynylene) bearing galvinoxyl residues and its chiroptical and magnetic properties. Synthetic Metals, 2009, 159, 864-867.	3.9	7
72	Copper(I) Iodide Accelerates Catalytic Activation in Rhodium Complex-catalyzed Helix-sense-selective Polymerization of Achiral Phenylacetylene Monomers. Chemistry Letters, 2008, 37, 390-391.	1.3	29

#	Article	IF	CITATIONS
73	Enantioselective Permeability through Membranes from a Poly(substituted phenylacetylene) Having a Chiral Helical Backbone and Achiral Bidentate Ligands as Pendant Groups. Chemistry Letters, 2007, 36, 220-221.	1.3	37
74	Helix-Sense Tunability Induced by Achiral Diene Ligands in the Chiral Catalytic System for the Helix-Sense-Selective Polymerization of Achiral and Bulky Phenylacetylene Monomers. Macromolecules, 2007, 40, 7098-7102.	4.8	39
75	Synthesis of an optically active helical poly(1,3-phenyleneethynylene) bearing stable radicals and its chiroptical and magnetic properties. Polyhedron, 2007, 26, 1825-1829.	2.2	11
76	Synthesis of functional π-conjugated polymers from aromatic acetylenes. Polymer, 2006, 47, 4867-4892.	3.8	245
77	Synthesis of poly(phenylacetylene)-based polydendrons consisting of a phenyleneethynylene repeating unit, and oxygen/nitrogen permeation behavior of their membranes. Journal of Membrane Science, 2006, 278, 365-372.	8.2	27
78	Helix-sense-selective Polymerization of a Phenylacetylene Bearing an Achiral and Bulky Galvinoxyl Moiety. Chemistry Letters, 2005, 34, 854-855.	1.3	40
79	Synthesis and magnetic characterization of monodisperse oligo(9,10-anthryleneethynylene)-based polyradicals with two pendant stable phenoxyls in one anthracene skeleton. Polyhedron, 2005, 24, 2544-2549.	2.2	14
80	Synthesis of Chiral Helical Poly(hydroxyl-containing phenylacetylene) Membranes by in-Situ Depinanylsilylation and Their Enantioselective Permeabilities. Macromolecules, 2005, 38, 6367-6373.	4.8	84
81	New Macromolecular Architectures for Permselective Membranes—Gas Permselective Membranes from Dendrimers and Enantioselectively Permeable Membranes from One-handed Helical Polymers—. Polymer Journal, 2005, 37, 717-735.	2.7	100
82	Assignment of Helical Sense for Poly(phenylacetylene) Bearing Achiral Galvinoxyl Chromophore Synthesized by Helix-Sense-Selective Polymerization. Macromolecules, 2005, 38, 9420-9426.	4.8	75
83	Role of chiral amine cocatalysts in the helix-sense-selective polymerization of a phenylacetylene using a catalytic system. Polymer, 2004, 45, 8109-8114.	3.8	44
84	Synthesis of chiral helical poly[p-(oligopinanylsiloxanyl)phenylacetylene]s and enantioselective permeability of their membranes. Journal of Polymer Science Part A, 2004, 42, 4502-4517.	2.3	58
85	A poly(9,10-anthryleneethynylene)-based polyradical designed to be a ladder-like ferromagnetic spin coupling network. Polyhedron, 2003, 22, 1845-1850.	2.2	16
86	Enantioselective Permeation through Membranes of Chiral Helical Polymers Prepared by Depinanylsilylation of Poly(diphenylacetylene) with a High Content of the Pinanylsilyl Group. Macromolecules, 2003, 36, 9694-9697.	4.8	95
87	Entropy Effect on Physical Displacement of Redox Molecules in a Nafion Film as Studied by Double Potential-Step Chronoabsorptometry. Journal of Physical Chemistry B, 2003, 107, 12662-12667.	2.6	7
88	Helix-Sense-Selective Polymerization of Phenylacetylene Having Two Hydroxy Groups Using a Chiral Catalytic System. Journal of the American Chemical Society, 2003, 125, 6346-6347.	13.7	317
89	Ladderlike Ferromagnetic Spin Coupling Network on a π-Conjugated Pendant Polyradical. Journal of the American Chemical Society, 2003, 125, 3554-3557.	13.7	79
90	Synthesis of a Pendant Polyradical with a New π-Conjugated Polymer Backbone Containing an Anthracene Skeleton and Its Ferromagnetic Spin Coupling. Chemistry of Materials, 2002, 14, 3898-3906.	6.7	39

#	Article	IF	CITATIONS
91	Helical chirality of ?-conjugated main-chain induced by polymerization of phenylacetylene with chiral bulky pinanyl groups: Effects of the flexible spacer and polymerization catalyst. Journal of Polymer Science Part A, 2002, 40, 1689-1697.	2.3	41
92	Synthesis and stable high oxygen permeability of poly(diphenylacetylene)s with two or three trimethylsilyl groups. Polymer, 2002, 43, 1705-1709.	3.8	9
93	Poly(9,10-anthryleneethynylene)-based polyradicals with pendant phenoxyls. Polyhedron, 2001, 20, 1291-1296.	2.2	8
94	Pervaporation of nonaqueous ethanol azeotropes through interpenetrating polymer network membranes prepared from poly(4-vinylpyridine) and poly(vinyl alcohol). Journal of Applied Polymer Science, 2001, 82, 2729-2738.	2.6	12
95	Polymerization of Phenylacetylene-Based Monodendrons and Structure of the Corresponding Polydendrons Polymer Journal, 2001, 33, 879-890.	2.7	19
96	Polydendrons and polymacrocycles with phenyleneethynylene repeating unit. Polymers for Advanced Technologies, 2000, 11, 685-691.	3.2	8
97	Polymerization of (p-vinylphenyl)hydrogalvinoxyl and formation of a stable polyradical derivative. Journal of Polymer Science Part A, 1999, 37, 189-198.	2.3	16
98	Ï€-Conjugated Polyradicals Containing Anthracene Skeleton in the Backbone Chain. Molecular Crystals and Liquid Crystals, 1999, 334, 221-228.	0.3	9
99	Synthesis and Properties of Polymers from Disubstituted Acetylenes with Chiral Pinanyl Groups. Macromolecules, 1999, 32, 79-85.	4.8	119
100	Synthesis of an Optically Active Poly(phenylacetylene) Bearing Galvinoxyl Radicals for Magnetic Materials. Chemistry Letters, 1999, 28, 623-624.	1.3	25
101	Pervaporation and solute separation through semi-interpenetrating and interpenetrating polymer network membranes prepared from poly(4-vinylpyridine) and poly(glycidyl methacrylate). Journal of Applied Polymer Science, 1998, 69, 1953-1963.	2.6	5
102	Polydendron:Â Polymerization of Dendritic Phenylacetylene Monomers. Macromolecules, 1997, 30, 3118-3121.	4.8	94
103	Enantioselective Permeation of Various Racemates through an Optically Active Poly{1-[dimethyl(10-pinanyl)silyl]-1-propyne} Membrane. Macromolecules, 1996, 29, 4192-4198.	4.8	137
104	Poly(phenylenevinylene)-Attached Phenoxyl Radicals:Â Ferromagnetic Interaction through Planarized and l€-Conjugated Skeletons. Journal of the American Chemical Society, 1996, 118, 9695-9704.	13.7	101
105	UPS Study of Poly(phenylenevinylene)s Substituted with Hexyloxy, Phenoxy, and Nitroxy Residues. Polymer Journal, 1996, 28, 182-184.	2.7	5
106	Synthesis of and Ferromagnetic Coupling in Poly(phenylenevinylene)s Bearing Built-int-Butyl Nitroxides. Bulletin of the Chemical Society of Japan, 1996, 69, 499-508.	3.2	47
107	Macromolecular Design for Optical Resolution Membrane Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1996, 54, 525-536.	0.1	6
108	Electrochemical study of the nitroxyl radical derivatives built in the π-conjugated poly(phenylenevinylene) skeleton. Polymers for Advanced Technologies, 1995, 6, 707-710.	3.2	3

#	Article	IF	CITATIONS
109	New Aspects of High-Spin Chemistry. Molecular Crystals and Liquid Crystals, 1995, 271, 129-146.	0.3	6
110	Poly[(N-Oxyamino) and (Oxyphenyl)Phenylenevinylene]s: Magnetically Coupled Polyradicals in the Chain. Molecular Crystals and Liquid Crystals, 1995, 272, 153-160.	0.3	4
111	Ï€-Conjugated Polyradicals With Poly(Phenylene-Vinylene) Skeleton and Their Through-Bond and Long-Range Interaction. Molecular Crystals and Liquid Crystals, 1995, 272, 131-138.	0.3	4
112	Through-Bond and Long-Range Ferromagnetic Spin Alignment in a .piConjugated Polyradical with a Poly(phenylenevinylene) Skeleton. Journal of the American Chemical Society, 1995, 117, 548-549.	13.7	75
113	Magnetic Characterization and Computational Modeling of Poly(phenylacetylenes) Bearing Stable Radical Groups. Macromolecules, 1994, 27, 3082-3086.	4.8	53
114	Poly(phenylenevinylene) Bearing Built-intert-Butylnitroxide. A Polyradical Ferromagnetically Coupled in the Intrachain. Chemistry Letters, 1994, 23, 2135-2138.	1.3	29
115	Polyacetylene Derivatives with Chain-Sided Phenoxy and Galvinoxyl Radicals. Molecular Crystals and Liquid Crystals, 1993, 233, 89-95.	0.3	11
116	Poly(Phenylvinylene) and Poly(Phenylene-Vinylene) with Nitroxide Radicals. Molecular Crystals and Liquid Crystals, 1993, 232, 143-150.	0.3	12
117	Polymerization and photoinitiation behavior in the light-cured dental composite resins. Polymers for Advanced Technologies, 1992, 3, 437-441.	3.2	11
118	Synthesis and Magnetic Properties of Conjugated Stable Polyradicals. Journal of Macromolecular Science Part A, Chemistry, 1991, 28, 1177-1187.	0.3	2
119	Poly(p-ethynylphenyl)galvinoxyl: formation of a new conjugated polyradical with an extraordinarily high spin concentration. Macromolecules, 1990, 23, 4487-4488.	4.8	47