Thomas Schrader

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1415434/publications.pdf

Version: 2024-02-01

52 papers

1,828 citations

236925 25 h-index 265206 42 g-index

57 all docs

57 docs citations

57 times ranked

2322 citing authors

#	Article	IF	CITATIONS
1	Molecular tweezers – a new class of potent broad-spectrum antivirals against enveloped viruses. Chemical Communications, 2022, 58, 2954-2966.	4.1	6
2	The molecular tweezer CLR01 improves behavioral deficits and reduces tau pathology in P301S-tau transgenic mice. Alzheimer's Research and Therapy, 2021, 13, 6.	6.2	15
3	Specific inhibition of the Survivin–CRM1 interaction by peptide-modified molecular tweezers. Nature Communications, 2021, 12, 1505.	12.8	18
4	Prospects of ultraviolet resonance Raman spectroscopy in supramolecular chemistry on proteins. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 254, 119622.	3.9	6
5	Supramolecular Enhancement of a Natural 14–3–3 Protein Ligand. Journal of the American Chemical Society, 2021, 143, 13495-13500.	13.7	8
6	The Molecular Tweezer CLR01 Inhibits Antibody-Resistant Cell-to-Cell Spread of Human Cytomegalovirus. Viruses, 2021, 13, 1685.	3.3	9
7	Lysine-selective molecular tweezers are cell penetrant and concentrate in lysosomes. Communications Biology, 2021, 4, 1076.	4.4	6
8	Inhibition of Staphylococcus aureus biofilm-forming functional amyloid by molecular tweezers. Cell Chemical Biology, 2021, 28, 1310-1320.e5.	5.2	15
9	New Tools to Probe the Protein Surface: Ultrasmall Gold Nanoparticles Carry Amino Acid Binders. Journal of Physical Chemistry B, 2021, 125, 115-127.	2.6	12
10	A tribute to Carsten Schmuck. Beilstein Journal of Organic Chemistry, 2021, 17, 2795-2798.	2.2	0
11	CLR01 protects dopaminergic neurons in vitro and in mouse models of Parkinson's disease. Nature Communications, 2020, 11, 4885.	12.8	39
12	Supramolecular Mechanism of Viral Envelope Disruption by Molecular Tweezers. Journal of the American Chemical Society, 2020, 142, 17024-17038.	13.7	31
13	Accelerated trypsin autolysis by affinity polymer templates. RSC Advances, 2020, 10, 28711-28719.	3.6	2
14	Different Inhibitors of Al 2 42-Induced Toxicity Have Distinct Metal-Ion Dependency. ACS Chemical Neuroscience, 2020, 11, 2243-2255.	3 . 5	2
15	The Amyloid Inhibitor CLR01 Relieves Autophagy and Ameliorates Neuropathology in a Severe Lysosomal Storage Disease. Molecular Therapy, 2020, 28, 1167-1176.	8.2	28
16	Structural rearrangement of amyloid-β upon inhibitor binding suppresses formation of Alzheimer's disease related oligomers. ELife, 2020, 9, .	6.0	20
17	Native Top-Down Mass Spectrometry and Ion Mobility Spectrometry of the Interaction of Tau Protein with a Molecular Tweezer Assembly Modulator. Journal of the American Society for Mass Spectrometry, 2019, 30, 16-23.	2.8	39
18	The molecular tweezer CLR01 reduces aggregated, pathologic, and seeding-competent α-synuclein in experimental multiple system atrophy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 165513.	3.8	25

#	Article	IF	Citations
19	Molecular Lysine Tweezers Counteract Aberrant Protein Aggregation. Frontiers in Chemistry, 2019, 7, 657.	3.6	17
20	Bisphosphonate ligand mediated ultrasensitive capacitive protein sensor: complementary match of supramolecular and dynamic chemistry. New Journal of Chemistry, 2019, 43, 847-852.	2.8	5
21	Dissociation of the Signaling Protein Kâ€Ras4B from Lipid Membranes Induced by a Molecular Tweezer. Chemistry - A European Journal, 2019, 25, 9827-9833.	3.3	5
22	Major Differences between the Self-Assembly and Seeding Behavior of Heparin-Induced and in Vitro Phosphorylated Tau and Their Modulation by Potential Inhibitors. ACS Chemical Biology, 2019, 14, 1363-1379.	3.4	34
23	The molecular tweezer CLR01 inhibits aberrant superoxide dismutase 1 (SOD1) self-assembly in vitro and in the G93A-SOD1 mouse model of ALS. Journal of Biological Chemistry, 2019, 294, 3501-3513.	3.4	30
24	The molecular tweezer CLR01 inhibits Ebola and Zika virus infection. Antiviral Research, 2018, 152, 26-35.	4.1	31
25	A Synthetic Methodology Toward Pyrrolo[2,3- <i>b</i>)pyridones for GC Base Pair Recognition. Organic Letters, 2018, 20, 6961-6964.	4.6	3
26	Cell entry of a host-targeting protein of oomycetes requires gp96. Nature Communications, 2018, 9, 2347.	12.8	28
27	Using Molecular Tweezers to Remodel Abnormal Protein Self-Assembly and Inhibit the Toxicity of Amyloidogenic Proteins. Methods in Molecular Biology, 2018, 1777, 369-386.	0.9	12
28	Molecular Tweezers with Additional Recognition Sites. Chemistry - A European Journal, 2018, 24, 11332-11343.	3.3	19
29	Inhibition of Huntingtin Exon-1 Aggregation by the Molecular Tweezer CLR01. Journal of the American Chemical Society, 2017, 139, 5640-5643.	13.7	49
30	A Binary Bivalent Supramolecular Assembly Platform Based on Cucurbit[8]uril and Dimeric Adapter Protein 14â€3â€3. Angewandte Chemie - International Edition, 2017, 56, 8998-9002.	13.8	81
31	A Molecular Tweezer Ameliorates Motor Deficits in Mice Overexpressing \hat{l}_{\pm} -Synuclein. Neurotherapeutics, 2017, 14, 1107-1119.	4.4	49
32	Molecular Tweezers Inhibit PARPâ€1 by a New Mechanism. European Journal of Organic Chemistry, 2017, 2017, 2223-2229.	2.4	8
33	The Molecular Tweezer CLR01 Stabilizes a Disordered Protein–Protein Interface. Journal of the American Chemical Society, 2017, 139, 16256-16263.	13.7	56
34	Inhibition of Mutant αB Crystallinâ€Induced Protein Aggregation by a Molecular Tweezer. Journal of the American Heart Association, 2017, 6, .	3.7	15
35	Eine NMRâ€Methode zur Bestimmung der Bindungsreihenfolge supramolekularer Liganden an basische Reste in Proteinen. Angewandte Chemie, 2017, 129, 14953-14957.	2.0	2
36	An NMR Method To Pinpoint Supramolecular Ligand Binding to Basic Residues on Proteins. Angewandte Chemie - International Edition, 2017, 56, 14758-14762.	13.8	16

#	Article	IF	CITATIONS
37	A Binary Bivalent Supramolecular Assembly Platform Based on Cucurbit[8]uril and Dimeric Adapter Protein 14â€3â€3. Angewandte Chemie, 2017, 129, 9126-9130.	2.0	26
38	Metabolic shift toward oxidative phosphorylation in docetaxel resistant prostate cancer cells. Oncotarget, 2016, 7, 61890-61904.	1.8	103
39	Protein Camouflage: Supramolecular Anion Recognition by Ubiquitin. ChemBioChem, 2016, 17, 774-783.	2.6	29
40	Reducing synuclein accumulation improves neuronal survival after spinal cord injury. Experimental Neurology, 2016, 278, 105-115.	4.1	28
41	Molecular tweezers for lysine and arginine – powerful inhibitors of pathologic protein aggregation. Chemical Communications, 2016, 52, 11318-11334.	4.1	115
42	Characterizing the Effect of Multivalent Conjugates Composed of $\hat{Al^2}$ -Specific Ligands and Metal Nanoparticles on Neurotoxic Fibrillar Aggregation. ACS Nano, 2016, 10, 7582-7597.	14.6	46
43	The Lys-Specific Molecular Tweezer, CLR01, Modulates Aggregation of the Mutant p53 DNA Binding Domain and Inhibits Its Toxicity. Biochemistry, 2015, 54, 3729-3738.	2.5	22
44	Amyloid \hat{I}^2 -Protein Assembly: The Effect of Molecular Tweezers CLR01 and CLR03. Journal of Physical Chemistry B, 2015, 119, 4831-4841.	2.6	69
45	Molecular Tweezers Inhibit Islet Amyloid Polypeptide Assembly and Toxicity by a New Mechanism. ACS Chemical Biology, 2015, 10, 1555-1569.	3.4	45
46	Toxicity Inhibitors Protect Lipid Membranes from Disruption by A \hat{l}^2 42. ACS Chemical Neuroscience, 2015, 6, 1860-1869.	3.5	28
47	A molecular tweezer antagonizes seminal amyloids and HIV infection. ELife, 2015, 4, .	6.0	71
48	Molecular Basis for Preventing \hat{l}_{\pm} -Synuclein Aggregation by a Molecular Tweezer. Journal of Biological Chemistry, 2014, 289, 10727-10737.	3.4	85
49	Molecular tweezers modulate 14-3-3 protein–protein interactions. Nature Chemistry, 2013, 5, 234-239.	13.6	176
50	Effect of molecular clips and tweezers on enzymatic reactions by binding coenzymes and basic amino acids. Pure and Applied Chemistry, 2010, 82, 991-999.	1.9	13
51	Artificial protein sensors. Molecular BioSystems, 2007, 3, 241.	2.9	29
52	A Molecular Tweezer for Lysine and Arginine. Journal of the American Chemical Society, 2005, 127, 14415-14421.	13.7	200