Chang Hyun Khang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1415334/publications.pdf

Version: 2024-02-01

430874 501196 2,654 31 18 citations h-index papers

28 g-index 37 37 37 2690 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The <i>Magnaporthe oryzae</i> Effector AvrPiz-t Targets the RING E3 Ubiquitin Ligase APIP6 to Suppress Pathogen-Associated Molecular Pattern–Triggered Immunity in Rice. Plant Cell, 2012, 24, 4748-4762.	6.6	472
2	Translocation of <i>Magnaporthe oryzae </i> Effectors into Rice Cells and Their Subsequent Cell-to-Cell Movement A. Plant Cell, 2010, 22, 1388-1403.	6.6	426
3	Interaction Transcriptome Analysis Identifies <i>Magnaporthe oryzae</i> BAS1-4 as Biotrophy-Associated Secreted Proteins in Rice Blast Disease Â. Plant Cell, 2009, 21, 1273-1290.	6.6	346
4	Genome-wide functional analysis of pathogenicity genes in the rice blast fungus. Nature Genetics, 2007, 39, 561-565.	21.4	205
5	Recent advances in rice blast effector research. Current Opinion in Plant Biology, 2010, 13, 434-441.	7.1	174
6	Live-cell fluorescence imaging to investigate the dynamics of plant cell death during infection by the rice blast fungus Magnaporthe oryzae. BMC Plant Biology, 2016, 16, 69.	3.6	130
7	A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum. Fungal Genetics and Biology, 2005, 42, 483-492.	2.1	129
8	Genome Organization and Evolution of the <i> AVR-Pita </i> Avirulence Gene Family in the <i> Magnaporthe grisea </i> Species Complex. Molecular Plant-Microbe Interactions, 2008, 21, 658-670.	2.6	127
9	The ER Chaperone LHS1 Is Involved in Asexual Development and Rice Infection by the Blast Fungus <i>Magnaporthe oryzae</i> A Â Â. Plant Cell, 2009, 21, 681-695.	6.6	126
10	Two nuclear effectors of the rice blast fungus modulate host immunity via transcriptional reprogramming. Nature Communications, 2020, 11, 5845.	12.8	75
11	Global Expression Profiling of Transcription Factor Genes Provides New Insights into Pathogenicity and Stress Responses in the Rice Blast Fungus. PLoS Pathogens, 2013, 9, e1003350.	4.7	61
12	Filamentous Fungi (Magnaporthe grisea and Fusarium oxysporum). , 2006, 344, 403-420.		55
13	Evolution and Organization of a Highly Dynamic, Subtelomeric Helicase Gene Family in the Rice Blast Fungus <i>Magnaporthe grisea</i> . Genetics, 2002, 162, 103-112.	2.9	45
14	Thiosulfinate Tolerance Is a Virulence Strategy of an Atypical Bacterial Pathogen of Onion. Current Biology, 2020, 30, 3130-3140.e6.	3.9	36
15	Regulation of cAMP-dependent protein kinase during appressorium formation in Magnaporthe grisea. FEMS Microbiology Letters, 1999, 170, 419-423.	1.8	32
16	Genome wide analysis of the transition to pathogenic lifestyles in Magnaporthales fungi. Scientific Reports, 2018, 8, 5862.	3.3	28
17	Plant Pathogen Culture Collections: It Takes a Village to Preserve These Resources Vital to the Advancement of Agricultural Security and Plant Pathology. Phytopathology, 2006, 96, 920-925.	2.2	26
18	Subcellular three-dimensional imaging deep through multicellular thick samples by structured illumination microscopy and adaptive optics. Nature Communications, 2021, 12, 3148.	12.8	25

#	Article	IF	CITATIONS
19	Nuclear and structural dynamics during the establishment of a specialized effector-secreting cell by Magnaporthe oryzae in living rice cells. BMC Cell Biology, 2017, 18, 11.	3.0	21
20	Mitotic stopwatch for the blast fungus Magnaporthe oryzae during invasion of rice cells. Fungal Genetics and Biology, 2016, 93, 46-49.	2.1	20
21	The appressorium of the rice blast fungus Magnaporthe oryzae remains mitotically active during post-penetration hyphal growth. Fungal Genetics and Biology, 2017, 98, 35-38.	2.1	20
22	Magnaporthe oryzae and Rice Blast Disease. , 2014, , 591-606.		14
23	A nuclear contortionist: the mitotic migration of <i>Magnaporthe oryzae</i> nuclei during plant infection. Mycology, 2018, 9, 202-210.	4.4	14
24	Disruption of the Interfacial Membrane Leads to Magnaporthe oryzae Effector Re-location and Lifestyle Switch During Rice Blast Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 681734.	3.7	14
25	A strikingly-angled spindle mediates nuclear migration during colonization of rice cells infected by Magnaporthe oryzae. Fungal Genetics and Biology, 2019, 126, 56-60.	2.1	6
26	Tandem DNA repeats contain <i>cis</i> àâ€regulatory sequences that activate biotrophyâ€specific expression of <i>Magnaporthe</i> effector gene <i>PWL2</i> Molecular Plant Pathology, 2021, 22, 508-521.	4.2	6
27	Resistance of Annual Ryegrass Germplasm to a Highly Aggressive New Strain of Blast (Gray Leaf Spot). Journal of Crop Improvement, 2016, 30, 311-322.	1.7	4
28	Visualizing the Movement of Magnaporthe oryzae Effector Proteins in Rice Cells During Infection. Methods in Molecular Biology, 2018, 1848, 103-117.	0.9	3
29	Cellular and Molecular Analyses of Biotrophic Invasion in Rice Blast Disease. , 2009, , 83-91.		2
30	Nup84 persists within the nuclear envelope of the rice blast fungus, Magnaporthe oryzae, during mitosis. Fungal Genetics and Biology, 2021, 146, 103472.	2.1	2
31	Vacuole Dynamics in Rice Cells Invaded by the Blast Fungus Magnaporthe oryzae. Methods in Molecular Biology, 2018, 1789, 195-203.	0.9	1