
Jan Vogelsang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1414597/publications.pdf Version: 2024-02-01

IAN VOCELSANC

#	Article	IF	CITATIONS
1	Vibrations Responsible for Luminescence from HJ-Aggregates of Conjugated Polymers Identified by Cryogenic Spectroscopy of Single Nanoparticles. ACS Nano, 2022, 16, 6382-6393.	14.6	3
2	Tracking Exciton Diffusion and Exciton Annihilation in Single Nanoparticles of Conjugated Polymers by Photon Correlation Spectroscopy. Advanced Optical Materials, 2022, 10, 2200092.	7.3	2
3	Picosecond time-resolved photon antibunching measures nanoscale exciton motion and the true number of chromophores. Nature Communications, 2021, 12, 1327.	12.8	18
4	Photon correlations probe the quantized nature of light emission from optoelectronic materials. Applied Physics Reviews, 2021, 8, .	11.3	6
5	How Blinking Affects Photon Correlations in Multichromophoric Nanoparticles. ACS Nano, 2021, , .	14.6	0
6	Dynamic Quenching of Triplet Excitons in Single Conjugated-Polymer Chains. Journal of Physical Chemistry Letters, 2020, 11, 5192-5198.	4.6	5
7	Control of Intrachain Morphology in the Formation of Polyfluorene Aggregates on the Singleâ€Molecule Level. ChemPhysChem, 2020, 21, 961-965.	2.1	16
8	Homo-FRET in π-Conjugated Polygons: Intermediate-Strength Dipole–Dipole Coupling Makes Energy Transfer Reversible. Nano Letters, 2019, 19, 5483-5488.	9.1	8
9	Energy Transfer from Perovskite Nanocrystals to Dye Molecules Does Not Occur by FRET. Nano Letters, 2019, 19, 8896-8902.	9.1	21
10	Interplay Between J―and Hâ€Type Coupling in Aggregates of Ï€â€Conjugated Polymers: A Singleâ€Molecule Perspective. Angewandte Chemie - International Edition, 2019, 58, 18898-18902.	13.8	24
11	Interplay Between J―and Hâ€Type Coupling in Aggregates of Ï€â€Conjugated Polymers: A Singleâ€Molecule Perspective. Angewandte Chemie, 2019, 131, 19074-19078.	2.0	3
12	Single-molecule photoredox catalysis. Chemical Science, 2019, 10, 681-687.	7.4	40
13	Interchromophoric Interactions Determine the Maximum Brightness Density in DNA Origami Structures. Nano Letters, 2019, 19, 1275-1281.	9.1	40
14	Exciton Gating and Triplet Deshelving in Single Dye Molecules Excited by Perovskite Nanocrystal FRET Antennae. Journal of Physical Chemistry Letters, 2019, 10, 1055-1062.	4.6	14
15	Molecular excitonic seesaws. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3626-E3634.	7.1	12
16	Chemical Photocatalysis with Rhodamine 6G: Investigation of Photoreduction by Simultaneous Fluorescence Correlation Spectroscopy and Fluorescence Lifetime Measurements. Journal of Physical Chemistry B, 2018, 122, 10728-10735.	2.6	19
17	Fluctuations in the Emission Polarization and Spectrum in Single Chains of a Common Conjugated Polymer for Organic Photovoltaics. Small, 2018, 14, e1804312.	10.0	2
18	H-Aggregation Effects between π-Conjugated Chromophores in Cofacial Dimers and Trimers: Comparison of Theory and Single-Molecule Experiment. Journal of Physical Chemistry B, 2018, 122, 6431-6441.	2.6	12

JAN VOGELSANG

#	Article	IF	CITATIONS
19	Molecular Polygons Probe the Role of Intramolecular Strain in the Photophysics of Ï€â€Conjugated Chromophores. Angewandte Chemie - International Edition, 2017, 56, 1234-1238.	13.8	15
20	Switching between H- and J-type electronic coupling in single conjugated polymer aggregates. Nature Communications, 2017, 8, 1641.	12.8	100
21	Determining the True Optical Gap in a High-Performance Organic Photovoltaic Polymer Using Single-Molecule Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 3494-3499.	4.6	12
22	Role of Triplet-State Shelving in Organic Photovoltaics: Single-Chain Aggregates of Poly(3-hexylthiophene) versus Mesoscopic Multichain Aggregates. Journal of the American Chemical Society, 2017, 139, 9787-9790.	13.7	22
23	Impact of charge carrier injection on single-chain photophysics of conjugated polymers. Applied Physics Letters, 2016, 108, .	3.3	7
24	Molecular Water Lilies: Orienting Single Molecules in a Polymer Film by Solvent Vapor Annealing. Journal of Physical Chemistry Letters, 2016, 7, 4451-4457.	4.6	17
25	Differentiation between Shallow and Deep Charge Trap States on Single Poly(3â€hexylthiophene) Chains through Fluorescence Photon Statistics. ChemPhysChem, 2015, 16, 3578-3583.	2.1	8
26	Spontaneous Fluctuations of Transition Dipole Moment Orientation in OLED Triplet Emitters. Journal of Physical Chemistry Letters, 2015, 6, 999-1004.	4.6	23
27	Temporal Fluctuations in Excimer-Like Interactions between π-Conjugated Chromophores. Journal of Physical Chemistry Letters, 2015, 6, 1321-1326.	4.6	21
28	Mesoscopic quantum emitters from deterministic aggregates of conjugated polymers. Proceedings of the United States of America, 2015, 112, E5560-6.	7.1	42
29	Unraveling the Electronic Heterogeneity of Charge Traps in Conjugated Polymers by Single-Molecule Spectroscopy. Journal of Physical Chemistry Letters, 2014, 5, 573-577.	4.6	16
30	Chromophore Bending Controls Fluorescence Lifetime in Single Conjugated Polymer Chains. Journal of Physical Chemistry Letters, 2014, 5, 2165-2170.	4.6	26
31	Singlet-Triplet Annihilation Limits Exciton Yield in Poly(3-Hexylthiophene). Physical Review Letters, 2014, 112, 137402.	7.8	66
32	Fluctuating exciton localization in giant π-conjugated spoked-wheel macrocycles. Nature Chemistry, 2013, 5, 964-970.	13.6	89
33	Temporal Switching of Homo-FRET Pathways in Single-Chromophore Dimer Models of π-Conjugated Polymers. Journal of the American Chemical Society, 2013, 135, 78-81.	13.7	41
34	Unraveling the chromophoric disorder of poly(3-hexylthiophene). Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3550-6.	7.1	70
35	Solvent Vapor Annealing of Single Conjugated Polymer Chains: Building Organic Optoelectronic Materials from the Bottom Up. Journal of Physical Chemistry Letters, 2012, 3, 1503-1513.	4.6	37
36	Self-assembly of highly ordered conjugated polymer aggregates with long-range energyÂtransfer. Nature Materials, 2011, 10, 942-946.	27.5	112

JAN VOGELSANG

#	Article	IF	CITATIONS
37	Innentitelbild: Watching the Annealing Process One Polymer Chain at a Time (Angew. Chem. 10/2011). Angewandte Chemie, 2011, 123, 2238-2238.	2.0	0
38	Watching the Annealing Process One Polymer Chain at a Time. Angewandte Chemie - International Edition, 2011, 50, 2257-2261.	13.8	97
39	Inside Cover: Watching the Annealing Process One Polymer Chain at a Time (Angew. Chem. Int. Ed.) Tj ETQq1 1 C).784314 13 . 8	rgBT /Overlo
40	Make them Blink: Probes for Superâ€Resolution Microscopy. ChemPhysChem, 2010, 11, 2475-2490.	2.1	183
41	Intrinsically Resolution Enhancing Probes for Confocal Microscopy. Nano Letters, 2010, 10, 672-679.	9.1	26
42	On the Mechanism of Trolox as Antiblinking and Antibleaching Reagent. Journal of the American Chemical Society, 2009, 131, 5018-5019.	13.7	287
43	Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8107-8112.	7.1	250
44	A Reducing and Oxidizing System Minimizes Photobleaching and Blinking of Fluorescent Dyes. Angewandte Chemie - International Edition, 2008, 47, 5465-5469.	13.8	538
45	Superresolution Microscopy on the Basis of Engineered Dark States. Journal of the American Chemical Society, 2008, 130, 16840-16841.	13.7	193