
Xiaoyu Qiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1414318/publications.pdf Version: 2024-02-01

ΧιλΟΥΠΟΠΙ

#	Article	IF	CITATIONS
1	Dual Singleâ€Atomic Niâ€N ₄ and Feâ€N ₄ Sites Constructing Janus Hollow Graphene for Selective Oxygen Electrocatalysis. Advanced Materials, 2020, 32, e2003134.	21.0	376
2	Oneâ€Pot Synthesis of Freestanding Porous Palladium Nanosheets as Highly Efficient Electrocatalysts for Formic Acid Oxidation. Advanced Functional Materials, 2017, 27, 1603852.	14.9	132
3	Isolated Fe Single Atomic Sites Anchored on Highly Steady Hollow Graphene Nanospheres as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. Advanced Science, 2019, 6, 1801103.	11.2	87
4	Highly simple and rapid synthesis of ultrathin gold nanowires with (111)-dominant facets and enhanced electrocatalytic properties. Journal of Materials Chemistry A, 2018, 6, 17682-17687.	10.3	61
5	A General Strategy for the Synthesis of PtM (M=Fe, Co, Ni) Decorated Threeâ€Dimensional Hollow Graphene Nanospheres for Éfficient Methanol Electrooxidation. Chemistry - A European Journal, 2018, 24, 1246-1252.	3.3	58
6	Sub-5 nm palladium nanoparticles <i>in situ</i> embedded in N-doped carbon nanoframes: facile synthesis, excellent sinter resistance and electrocatalytic properties. Journal of Materials Chemistry A, 2019, 7, 26243-26249.	10.3	40
7	Shape Control of Monodispersed Subâ€5 nm Pd Tetrahedrons and Laciniate Pd Nanourchins by Maneuvering the Dispersed State of Additives for Boosting ORR Performance. Small, 2020, 16, e1906026.	10.0	36
8	3D Graphene Hollow Nanospheres@Palladiumâ€Networks as an Efficient Electrocatalyst for Formic Acid Oxidation. Advanced Materials Interfaces, 2015, 2, 1500321.	3.7	35
9	Cationâ€Deficiencyâ€Dependent CO ₂ Electroreduction over Copperâ€Based Ruddlesden–Popper Perovskite Oxides. Angewandte Chemie - International Edition, 2022, 61, .	13.8	33
10	Atomic Crystal Facet Engineering of Core–Shell Nanotetrahedrons Restricted under Sub-10 Nanometer Region. ACS Nano, 2021, 15, 5178-5188.	14.6	27
11	Breaking the lattice match of Pd on Au(111) nanowires: manipulating the island and epitaxial growth pathways to boost the oxygen reduction reactivity. Journal of Materials Chemistry A, 2020, 8, 19300-19308.	10.3	25
12	Coupling the Atomically Dispersed Feâ€N ₃ Sites with Subâ€5Ânm Pd Nanocrystals Confined in Nâ€Doped Carbon Nanobelts to Boost the Oxygen Reduction for Microbial Fuel Cells. Advanced Functional Materials, 2022, 32, 2107683.	14.9	24
13	Achieving Highly Electrocatalytic Performance by Constructing Holey Reduced Graphene Oxide Hollow Nanospheres Sandwiched by Interior and Exterior Platinum Nanoparticles. ACS Applied Energy Materials, 2018, 1, 2341-2349.	5.1	19
14	Sacrificial Template-Based Synthesis of Unified Hollow Porous Palladium Nanospheres for Formic Acid Electro-Oxidation. Catalysts, 2015, 5, 992-1002.	3.5	17
15	Facile synthesis of PdFe alloy tetrahedrons for boosting electrocatalytic properties towards formic acid oxidation. Nanoscale, 2019, 11, 18015-18020.	5.6	14
16	Water-based synthesis and sensing application of polyallylamine functionalized platinum nanodendrite assemblies. Journal of Materials Chemistry A, 2013, 1, 14874.	10.3	11
17	High-density growth of ultrafine PdIr nanowires on graphene: reducing the graphene wrinkles and serving as efficient bifunctional electrocatalysts for water splitting. Nanoscale, 2019, 11, 14561-14568.	5.6	11
18	Modulating Hydroxylâ€Rich Interfaces on Nickel–Copper Double Hydroxide Nanotyres to Preâ€activate Alkaline Ammonia Oxidation Reactivity. Chemistry - A European Journal, 2021, 27, 4869-4875.	3.3	11

Χιλογυ Qiu

#	Article	IF	CITATIONS
19	Highlyâ€Branched Palladium Nanodandelions: Simple, Fast, and Green Fabrication with Superior Oxygen Reduction Property. Chemistry - A European Journal, 2019, 25, 4920-4926.	3.3	9
20	Pd–Au Asymmetric Nanopyramids: Lateral vs Vertical Growth of Au on Pd Decahedral Seeds. Chemistry of Materials, 2021, 33, 5391-5400.	6.7	9
21	Coupling isolated Ni single atoms with sub-10 nm Pd nanocrystals embedded in porous carbon frameworks to boost oxygen electrocatalysis for Zn–air batteries. Journal of Materials Chemistry A, 2022, 10, 6086-6095.	10.3	9
22	Polyamine-assisted hydrothermal synthesis of bimetallic Pd ₁ Cu ₃ multipods and their high catalytic ability in 4-nitrophenol reduction. RSC Advances, 2014, 4, 57144-57147.	3.6	8
23	<i>In situ</i> immobilization of isolated Pd single-atoms on graphene by employing amino-functionalized rigid molecules and their prominent catalytic performance. Catalysis Science and Technology, 2020, 10, 450-457.	4.1	6
24	Atomâ€Ratioâ€Conducted Tailoring of PdAu Bimetallic Nanocrystals with Distinctive Shapes and Dimensions for Boosting the ORR Performance. Chemistry - A European Journal, 2020, 26, 4480-4488.	3.3	6
25	Hollow platinum tetrapods: using a combination of {111} facets, surface concave topology, and ultrathin walls to boost their oxygen reduction reactivity. Journal of Materials Chemistry A, 2021, 9, 11537-11544.	10.3	4
26	Pd Growth Patterns: Shape Control of Monodispersed Subâ€5 nm Pd Tetrahedrons and Laciniate Pd Nanourchins by Maneuvering the Dispersed State of Additives for Boosting ORR Performance (Small) Tj ETQq0 0	0 1gBT /O\	vedock 10 Tf

27	Cationâ€Deficiencyâ€Dependent CO2 Electroreduction over Copperâ€Based Ruddlesdenâ€Popper Perovskite Oxides. Angewandte Chemie, 2022, 134, e202111670.	2.0	0	
----	--	-----	---	--