Ursula Grohmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1414253/publications.pdf

Version: 2024-02-01

50276 11,960 102 46 citations papers

98 h-index g-index 106 106 106 11611 docs citations times ranked citing authors all docs

34986

#	Article	IF	CITATIONS
1	Indoleamine 2,3â€dioxygenase 1 (IDO1): an upâ€toâ€date overview of an eclectic immunoregulatory enzyme. FEBS Journal, 2022, 289, 6099-6118.	4.7	56
2	Critical Assessment of a Structure-Based Screening Campaign for IDO1 Inhibitors: Tips and Pitfalls. International Journal of Molecular Sciences, 2022, 23, 3981.	4.1	6
3	The Landscape of AhR Regulators and Coregulators to Fine-Tune AhR Functions. International Journal of Molecular Sciences, 2021, 22, 757.	4.1	29
4	Novel mutations in the <i>WFS1</i> gene are associated with Wolfram syndrome and systemic inflammation. Human Molecular Genetics, 2021, 30, 265-276.	2.9	18
5	Vedolizumab Tissue Concentration Correlates to Mucosal Inflammation and Objective Treatment Response in Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2021, 27, 1813-1820.	1.9	4
6	Current Challenges for IDO2 as Target in Cancer Immunotherapy. Frontiers in Immunology, 2021, 12, 679953.	4.8	24
7	Editorial overview: Indoles: very busy (and not indolent) molecules at work in immune regulation. Current Opinion in Immunology, 2021, 70, v-vii.	5.5	O
8	Pathogenetic Interplay Between IL-6 and Tryptophan Metabolism in an Experimental Model of Obesity. Frontiers in Immunology, 2021, 12, 713989.	4.8	8
9	3-hydroxy-L-kynurenamine is an immunomodulatory biogenic amine. Nature Communications, 2021, 12, 4447.	12.8	30
10	Effects of probiotic administration on immune responses of children and adolescents with type 1 diabetes to a quadrivalent inactivated influenza vaccine. Human Vaccines and Immunotherapeutics, 2020, 16, 86-94.	3.3	23
11	Polyamines and Kynurenines at the Intersection of Immune Modulation. Trends in Immunology, 2020, 41, 1037-1050.	6.8	67
12	Reply to Han et al.: On track for an IDO1-based personalized therapy in autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24037-24038.	7.1	2
13	Amino Acid Metabolism in Rheumatoid Arthritis: Friend or Foe?. Biomolecules, 2020, 10, 1280.	4.0	26
14	Exemplifying complexity of immune suppression by a "canonical―speech: A glimpse into TNFRSFâ€activated signaling pathways in Treg cells. European Journal of Immunology, 2020, 50, 944-948.	2.9	2
15	Advanced Age Increases Immunosuppression in the Brain and Decreases Immunotherapeutic Efficacy in Subjects with Glioblastoma. Clinical Cancer Research, 2020, 26, 5232-5245.	7.0	52
16	New Insights from Crystallographic Data: Diversity of Structural Motifs and Molecular Recognition Properties between Groups of IDO1 Structures. ChemMedChem, 2020, 15, 891-899.	3.2	11
17	A novel mutation of indoleamine 2,3-dioxygenase 1 causes a rapid proteasomal degradation and compromises protein function. Journal of Autoimmunity, 2020, 115, 102509.	6.5	14
18	Positive allosteric modulation of indoleamine 2,3-dioxygenase 1 restrains neuroinflammation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3848-3857.	7.1	58

#	Article	IF	CITATIONS
19	Class IA PI3Ks regulate subcellular and functional dynamics of IDO1. EMBO Reports, 2020, 21, e49756.	4.5	24
20	Preclinical discovery and development of fingolimod for the treatment of multiple sclerosis. Expert Opinion on Drug Discovery, 2019, 14, 1199-1212.	5.0	25
21	Immunoregulatory Interplay Between Arginine and Tryptophan Metabolism in Health and Disease. Frontiers in Immunology, 2019, 10, 1565.	4.8	55
22	Wolfram syndrome, a rare neurodegenerative disease: from pathogenesis to future treatment perspectives. Journal of Translational Medicine, 2019, 17, 238.	4.4	81
23	Engagement of Nuclear Coactivator 7 by 3-Hydroxyanthranilic Acid Enhances Activation of Aryl Hydrocarbon Receptor in Immunoregulatory Dendritic Cells. Frontiers in Immunology, 2019, 10, 1973.	4.8	47
24	Growth and glycemic control in children with type 1 diabetes and asymptomatic celiac disease treated with a gluten -free diet for 1 year. European Journal of Inflammation, 2019, 17, 205873921985557.	0.5	2
25	<scp>IL</scp> â€35 g–expressing dendritic cells induce tolerance via Arginase 1. Journal of Cellular and Molecular Medicine, 2019, 23, 3757-3761.	3.6	9
26	Amino acid metabolism as drug target in autoimmune diseases. Autoimmunity Reviews, 2019, 18, 334-348.	5.8	48
27	Tracking Hidden Binding Pockets Along the Molecular Recognition Path of <scp>l</scp> â€Trp to Indoleamine 2,3â€Dioxygenase 1. ChemMedChem, 2019, 14, 2084-2092.	3.2	6
28	Opportunities and challenges in drug discovery targeting metabotropic glutamate receptor 4. Expert Opinion on Drug Discovery, 2018, 13, 411-423.	5.0	6
29	Microscale Thermophoresis and Docking Studies Suggest Lapachol and Auraptene are Ligands of IDO1. Natural Product Communications, 2018, 13, 1934578X1801300.	0.5	0
30	Is It Time to Use Probiotics to Prevent or Treat Obesity?. Nutrients, 2018, 10, 1613.	4.1	72
31	Induction of immunosuppressive functions and NF- \hat{l}° B by FLIP in monocytes. Nature Communications, 2018, 9, 5193.	12.8	45
32	Immune Checkpoint Molecules, Personalized Immunotherapy, and Autoimmune Diabetes. Trends in Molecular Medicine, 2018, 24, 931-941.	6.7	34
33	Loss of IDO1 Expression From Human Pancreatic \hat{l}^2 -Cells Precedes Their Destruction During the Development of Type 1 Diabetes. Diabetes, 2018, 67, 1858-1866.	0.6	42
34	Deficiency of immunoregulatory indoleamine 2,3-dioxygenase 1in juvenile diabetes. JCI Insight, 2018, 3, .	5.0	51
35	A Relay Pathway between Arginine and Tryptophan Metabolism Confers Immunosuppressive Properties on Dendritic Cells. Immunity, 2017, 46, 233-244.	14.3	241
36	Advances in indoleamine 2,3-dioxygenase 1 medicinal chemistry. MedChemComm, 2017, 8, 1378-1392.	3.4	33

#	Article	IF	CITATIONS
37	Amino-acid sensing and degrading pathways in immune regulation. Cytokine and Growth Factor Reviews, 2017, 35, 37-45.	7.2	79
38	The immune regulation in cancer by the amino acid metabolizing enzymes ARG and IDO. Current Opinion in Pharmacology, 2017, 35, 30-39.	3.5	114
39	Fragment-based approach to identify IDO1 inhibitor building blocks. European Journal of Medicinal Chemistry, 2017, 141, 169-177.	5.5	17
40	Challenges in the design of reliable immuno-oncology mouse models to inform drug development. Future Medicinal Chemistry, 2017, 9, 1313-1317.	2.3	4
41	Distinct roles of immunoreceptor tyrosineâ€based motifs in immunosuppressive indoleamine 2,3â€dioxygenase 1. Journal of Cellular and Molecular Medicine, 2017, 21, 165-176.	3.6	51
42	Eating Disorders and Disordered Eating Symptoms in Adolescents with Type 1 Diabetes. Nutrients, 2017, 9, 906.	4.1	80
43	The Proteasome Inhibitor Bortezomib Controls Indoleamine 2,3-Dioxygenase 1 Breakdown and Restores Immune Regulation in Autoimmune Diabetes. Frontiers in Immunology, 2017, 8, 428.	4.8	28
44	IDO1 and TGF- \hat{l}^2 Mediate Protective Effects of IFN- \hat{l}_\pm in Antigen-Induced Arthritis. Journal of Immunology, 2016, 197, 3142-3151.	0.8	21
45	Allosteric modulation of metabotropic glutamate receptor 4 activates IDO1-dependent, immunoregulatory signaling in dendritic cells. Neuropharmacology, 2016, 102, 59-71.	4.1	29
46	Stem cells from human amniotic fluid exert immunoregulatory function ⟨i⟩via⟨/i⟩ secreted indoleamine 2,3â€dioxygenase1. Journal of Cellular and Molecular Medicine, 2015, 19, 1593-1605.	3.6	45
47	The Coevolution of IDO1 and AhR in the Emergence of Regulatory T-Cells in Mammals. Frontiers in Immunology, 2015, 6, 58.	4.8	53
48	Islet antigen-pulsed dendritic cells expressing ectopic IL-35Ig protect nonobese diabetic mice from autoimmune diabetes. Cytokine, 2015, 75, 380-388.	3.2	8
49	LPS-conditioned dendritic cells confer endotoxin tolerance contingent on tryptophan catabolism. Immunobiology, 2015, 220, 315-321.	1.9	30
50	IDO1 suppresses inhibitor development in hemophilia A treated with factor VIII. Journal of Clinical Investigation, 2015, 125, 3766-3781.	8.2	39
51	Forced IDO 1 expression in dendritic cells restores immunoregulatory signalling in autoimmune diabetes. Journal of Cellular and Molecular Medicine, 2014, 18, 2082-2091.	3.6	47
52	Ligand Binding and Functional Selectivity of <scp>I</scp> -Tryptophan Metabolites at the Mouse Aryl Hydrocarbon Receptor (mAhR). Journal of Chemical Information and Modeling, 2014, 54, 3373-3383.	5.4	42
53	Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature, 2014, 511, 184-190.	27.8	574
54	TLRs and tryptophan metabolism at the crossroad of immunoregulatory pathways. Immunometabolism, 2014, 1 , \dots	6.0	3

#	Article	IF	Citations
55	High doses of CpG oligodeoxynucleotides stimulate a tolerogenic TLR9–TRIF pathway. Nature Communications, 2013, 4, 1852.	12.8	102
56	Bioengineering heterodimeric cytokines: turning promiscuous proteins into therapeutic agents. Biotechnology and Genetic Engineering Reviews, 2013, 29, 149-174.	6.2	19
57	Topical Application of Soluble CD83 Induces IDO-Mediated Immune Modulation, Increases Foxp3+ T Cells, and Prolongs Allogeneic Corneal Graft Survival. Journal of Immunology, 2013, 191, 1965-1975.	0.8	60
58	A GpC-Rich Oligonucleotide Acts on Plasmacytoid Dendritic Cells To Promote Immune Suppression. Journal of Immunology, 2012, 189, 2283-2289.	0.8	22
59	Indoleamine 2,3â€dioxygenase: From catalyst to signaling function. European Journal of Immunology, 2012, 42, 1932-1937.	2.9	160
60	Different Partners, Opposite Outcomes: A New Perspective of the Immunobiology of Indoleamine 2,3-Dioxygenase. Molecular Medicine, 2012, 18, 834-842.	4.4	74
61	Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nature Immunology, 2011, 12, 870-878.	14.5	577
62	Xenograft of Microencapsulated Sertoli Cells Reverses T1DM in NOD Mice by Inducing Neogenesis of Beta-Cells. Transplantation, 2010, 90, 1352-1357.	1.0	16
63	Proteasomal Degradation of Indoleamine 2,3-Dioxygenase in CD8 ⁺ Dendritic Cells is Mediated by Suppressor of Cytokine Signaling 3 (SOCS3). International Journal of Tryptophan Research, 2010, 3, IJTR.S3971.	2.3	23
64	Control of immune response by amino acid metabolism. Immunological Reviews, 2010, 236, 243-264.	6.0	273
65	Metabotropic glutamate receptor-4 modulates adaptive immunity and restrains neuroinflammation. Nature Medicine, 2010, 16, 897-902.	30.7	138
66	Correction: IDO Mediates Tlr9-Driven Protection From Experimental Autoimmune Diabetes. Journal of Immunology, 2010, 184, 7316-7316.	0.8	0
67	Indoleamine 2,3-Dioxygenase and Regulatory Function: Tryptophan Starvation and Beyond. Methods in Molecular Biology, 2010, 677, 269-280.	0.9	44
68	IDO Mediates TLR9-Driven Protection from Experimental Autoimmune Diabetes. Journal of Immunology, 2009, 183, 6303-6312.	0.8	101
69	Therapy of experimental type 1 diabetes by isolated Sertoli cell xenografts alone. Journal of Experimental Medicine, 2009, 206, 2511-2526.	8.5	84
70	TGF- \hat{l}^2 and kynurenines as the key to infectious tolerance. Trends in Molecular Medicine, 2009, 15, 41-49.	6.7	121
71	Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature, 2008, 451, 211-215.	27.8	492
72	Cutting Edge: Autocrine TGF-Î ² Sustains Default Tolerogenesis by IDO-Competent Dendritic Cells. Journal of Immunology, 2008, 181, 5194-5198.	0.8	154

#	Article	lF	CITATIONS
73	CTLA-4 Blockade Confers Lymphocyte Resistance to Regulatory T-Cells in Advanced Melanoma: Surrogate Marker of Efficacy of Tremelimumab?. Clinical Cancer Research, 2008, 14, 5242-5249.	7.0	104
74	SOCS3 drives proteasomal degradation of indoleamine 2,3-dioxygenase (IDO) and antagonizes IDO-dependent tolerogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20828-20833.	7.1	187
75	CTLA-4-immunoglobulin and indoleamine 2,3-dioxygenase in dominant tolerance. , 2008, , 87-106.		1
76	Immunosuppression Via Tryptophan Catabolism: The Role of Kynurenine Pathway Enzymes. Transplantation, 2007, 84, S17-S20.	1.0	82
77	Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nature Medicine, 2007, 13, 579-586.	30.7	298
78	IDO and regulatory T cells: a role for reverse signalling and non-canonical NF-κB activation. Nature Reviews Immunology, 2007, 7, 817-823.	22.7	423
79	IL-23 neutralization protects mice from Gram-negative endotoxic shock. Cytokine, 2006, 34, 161-169.	3.2	22
80	Tryptophan catabolism generates autoimmune-preventive regulatory T cells. Transplant Immunology, 2006, 17, 58-60.	1.2	97
81	Toward the identification of a tolerogenic signature in IDO-competent dendritic cells. Blood, 2006, 107, 2846-2854.	1.4	183
82	The Combined Effects of Tryptophan Starvation and Tryptophan Catabolites Down-Regulate T Cell Receptor ζ-Chain and Induce a Regulatory Phenotype in Naive T Cells. Journal of Immunology, 2006, 176, 6752-6761.	0.8	943
83	Kynurenine Pathway Enzymes in Dendritic Cells Initiate Tolerogenesis in the Absence of Functional IDO. Journal of Immunology, 2006, 177, 130-137.	0.8	164
84	Enhanced tryptophan catabolism in the absence of the molecular adapter DAP12. European Journal of Immunology, 2005, 35, 3111-3118.	2.9	38
85	Ligand and cytokine dependence of the immunosuppressive pathway of tryptophan catabolism in plasmacytoid dendritic cells. International Immunology, 2005, 17, 1429-1438.	4.0	74
86	Cutting Edge: Silencing Suppressor of Cytokine Signaling 3 Expression in Dendritic Cells Turns CD28-lg from Immune Adjuvant to Suppressant. Journal of Immunology, 2005, 174, 6582-6586.	0.8	88
87	CTLA-4–Ig Activates Forkhead Transcription Factors and Protects Dendritic Cells from Oxidative Stress in Nonobese Diabetic Mice. Journal of Experimental Medicine, 2004, 200, 1051-1062.	8.5	125
88	CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86. Nature Immunology, 2004, 5, 1134-1142.	14.5	262
89	Modulation of tryptophan catabolism by regulatory T cells. Nature Immunology, 2003, 4, 1206-1212.	14.5	1,172
90	Tolerance, DCs and tryptophan: much ado about IDO. Trends in Immunology, 2003, 24, 242-248.	6.8	702

#	Article	IF	Citations
91	CTLA-4, T helper lymphocytes and dendritic cells: an internal perspective of T-cell homeostasis. Trends in Molecular Medicine, 2003, 9, 133-135.	6.7	17
92	Functional Plasticity of Dendritic Cell Subsets as Mediated by CD40 Versus B7 Activation. Journal of Immunology, 2003, 171, 2581-2587.	0.8	100
93	A Defect in Tryptophan Catabolism Impairs Tolerance in Nonobese Diabetic Mice. Journal of Experimental Medicine, 2003, 198, 153-160.	8.5	193
94	Tryptophan Catabolism in Nonobese Diabetic Mice. Advances in Experimental Medicine and Biology, 2003, 527, 47-54.	1.6	20
95	IL-23 and IL-12 Have Overlapping, but Distinct, Effects on Murine Dendritic Cells. Journal of Immunology, 2002, 168, 5448-5454.	0.8	214
96	CTLA-4–Ig regulates tryptophan catabolism in vivo. Nature Immunology, 2002, 3, 1097-1101.	14.5	1,077
97	IL-6 Inhibits the Tolerogenic Function of CD8α+ Dendritic Cells Expressing Indoleamine 2,3-Dioxygenase. Journal of Immunology, 2001, 167, 708-714.	0.8	168
98	IFN- \hat{l}^3 Inhibits Presentation of a Tumor/Self Peptide by CD8 \hat{l} ± \hat{a} 2 Dendritic Cells Via Potentiation of the CD8 \hat{l} ±+ Subset. Journal of Immunology, 2000, 165, 1357-1363.	0.8	97
99	Immunogenicity of tumor peptides: importance of peptide length and stability of peptide/MHC class II complex. Cancer Immunology, Immunotherapy, 1999, 48, 195-203.	4.2	16
100	CD8+ cell activation to a major mastocytoma rejection antigen, P815AB: requirement for tumâ^ or helper peptides in priming for skin test reactivity to a P815AB-related peptide. European Journal of Immunology, 1995, 25, 2797-2802.	2.9	30
101	Use of a skin test assay to determine tumor-specific CD8+ T cell reactivity. European Journal of Immunology, 1994, 24, 1446-1452.	2.9	34
102	Course of Primary Candidiasis in T Cell-Depleted Mice Infected with Attenuated Variant Cells. Journal of Infectious Diseases, 1992, 166, 1384-1392.	4.0	54