
Patrick Calsou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1414167/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SDR enzymes oxidize specific lipidic alkynylcarbinols into cytotoxic protein-reactive species. ELife, 2022, 11, .	6.0	2
2	Transcription-associated topoisomerase 2α (TOP2A) activity is a major effector of cytotoxicity induced by G-quadruplex ligands. ELife, 2021, 10, .	6.0	46
3	Constrained G4 structures unveil topology specificity of known and new G4 binding proteins. Scientific Reports, 2021, 11, 13469.	3.3	15
4	XAB2 promotes Ku eviction from single-ended DNA double-strand breaks independently of the ATM kinase. Nucleic Acids Research, 2021, 49, 9906-9925.	14.5	8
5	BRCA1 prevents R-loop-associated centromeric instability. Cell Death and Disease, 2021, 12, 896.	6.3	24
6	ATM antagonizes NHEJ proteins assembly and DNA-ends synapsis at single-ended DNA double strand breaks. Nucleic Acids Research, 2020, 48, 9710-9723.	14.5	34
7	Dual Processing of R-Loops and Topoisomerase I Induces Transcription-Dependent DNA Double-Strand Breaks. Cell Reports, 2019, 28, 3167-3181.e6.	6.4	108
8	CNBP controls transcription by unfolding DNA G-quadruplex structures. Nucleic Acids Research, 2019, 47, 7901-7913.	14.5	52
9	Plugged into the Ku-DNA hub: The NHEJ network. Progress in Biophysics and Molecular Biology, 2019, 147, 62-76.	2.9	62
10	G-Quadruplex binding optimization by gold(<scp>iii</scp>) insertion into the center of a porphyrin. Dalton Transactions, 2019, 48, 6091-6099.	3.3	14
11	XLF and APLF bind Ku80 at two remote sites to ensure DNA repair by non-homologous end joining. Nature Structural and Molecular Biology, 2018, 25, 971-980.	8.2	78
12	Alkyneâ€Tagged Analogue of Jaspineâ€B: New Tool for Identifying Jaspineâ€B Mode of Action. ChemBioChem, 2018, 19, 2438-2442.	2.6	7
13	The DNA-Binding Polyamine Moiety in the Vectorized DNA Topoisomerase II Inhibitor F14512 Alters Reparability of the Consequent Enzyme-Linked DNA Double-Strand Breaks. Molecular Cancer Therapeutics, 2017, 16, 2166-2177.	4.1	8
14	A novel cytoprotective function for the <scp>DNA</scp> repair protein Ku in regulating p53 <scp>mRNA</scp> translation andÂfunction. EMBO Reports, 2016, 17, 508-518.	4.5	25
15	Structure-Based Virtual Ligand Screening on the XRCC4/DNA Ligase IV Interface. Scientific Reports, 2016, 6, 22878.	3.3	17
16	Coordinated nuclease activities counteract Ku at single-ended DNA double-strand breaks. Nature Communications, 2016, 7, 12889.	12.8	113
17	Polo-like kinase 1 mediates BRCA1 phosphorylation and recruitment at DNA double-strand breaks. Oncotarget, 2016, 7, 2269-2283.	1.8	27
18	Scaffold attachment factor A (SAF-A) and Ku temporally regulate repair of radiation-induced clustered genome lesions. Oncotarget, 2016, 7, 54430-54444.	1.8	16

#	Article	IF	CITATIONS
19	The nickel(II) complex of guanidinium phenyl porphyrin, a specific C-quadruplex ligand, targets telomeres and leads to POT1 mislocalization in culture cells. Journal of Biological Inorganic Chemistry, 2015, 20, 729-738.	2.6	24
20	Neddylation Promotes Ubiquitylation and Release of Ku from DNA-Damage Sites. Cell Reports, 2015, 11, 704-714.	6.4	107
21	Single-stranded DNA oligomers stimulate error-prone alternative repair of DNA double-strand breaks through hijacking Ku protein. Nucleic Acids Research, 2015, 43, gkv894.	14.5	14
22	DNA damage triggers SAF-A and RNA biogenesis factors exclusion from chromatin coupled to R-loops removal. Nucleic Acids Research, 2014, 42, 9047-9062.	14.5	143
23	Loss of BRCA1 impairs centromeric cohesion and triggers chromosomal instability. FASEB Journal, 2014, 28, 5250-5261.	0.5	18
24	Alternative end-joining pathway(s): Bricolage at DNA breaks. DNA Repair, 2014, 17, 81-97.	2.8	122
25	Role of intercalation and redox potential in DNA photosensitization by ruthenium(ii) polypyridyl complexes: assessment using DNA repair protein tests. Photochemical and Photobiological Sciences, 2013, 12, 1517-1526.	2.9	6
26	A noncatalytic function of the ligation complex during nonhomologous end joining. Journal of Cell Biology, 2013, 200, 173-186.	5.2	81
27	DNA-PK, a Pharmacological Target in Cancer Chemotherapy and Radiotherapy?. , 2013, , 25-44.		1
28	Improvement of porphyrins for G-quadruplex DNA targeting. Biochimie, 2011, 93, 1310-1317.	2.6	76
29	Ku counteracts mobilization of PARP1 and MRN in chromatin damaged with DNA double-strand breaks. Nucleic Acids Research, 2011, 39, 9605-9619.	14.5	94
30	TRF2/RAP1 and DNA–PK mediate a double protection against joining at telomeric ends. EMBO Journal, 2010, 29, 1573-1584.	7.8	67
31	A C-quadruplex structure within the 5′-UTR of TRF2 mRNA represses translation in human cells. Nucleic Acids Research, 2010, 38, 7187-7198.	14.5	168
32	TRF2 and Apollo Cooperate with Topoisomerase $2\hat{l}\pm$ to Protect Human Telomeres from Replicative Damage. Cell, 2010, 142, 230-242.	28.9	155
33	Cell nonhomologous end joining capacity controls SAF-A phosphorylation by DNA-PK in response to DNA double-strand breaks inducers. Cell Cycle, 2009, 8, 3717-3722.	2.6	34
34	ARTEMIS Nuclease Facilitates Apoptotic Chromatin Cleavage. Cancer Research, 2009, 69, 8120-8126.	0.9	14
35	Structural and Functional Interaction between the Human DNA Repair Proteins DNA Ligase IV and XRCC4. Molecular and Cellular Biology, 2009, 29, 3163-3172.	2.3	124
36	Effect of double-strand break DNA sequence on the PARP-1 NHEJ pathway. Biochemical and Biophysical Research Communications, 2008, 369, 982-988.	2.1	61

#	Article	IF	CITATIONS
37	c-Myc protein is degraded in response to UV irradiation. Cell Cycle, 2008, 7, 63-70.	2.6	15
38	Long-term XPC Silencing Reduces DNA Double-Strand Break Repair. Cancer Research, 2007, 67, 2526-2534.	0.9	56
39	Interplay between Cernunnos-XLF and Nonhomologous End-joining Proteins at DNA Ends in the Cell. Journal of Biological Chemistry, 2007, 282, 31937-31943.	3.4	47
40	Involvement of Polynucleotide Kinase in a Poly(ADP-ribose) Polymerase-1-dependent DNA Double-strand Breaks Rejoining Pathway. Journal of Molecular Biology, 2006, 356, 257-265.	4.2	92
41	The DNA repair complex DNA-PK, aÂpharmacological target inÂcancer chemotherapy andÂradiotherapy. Pathologie Et Biologie, 2006, 54, 185-193.	2.2	50
42	Interplay between Ku, Artemis, and the DNA-dependent Protein Kinase Catalytic Subunit at DNA Ends. Journal of Biological Chemistry, 2006, 281, 27784-27793.	3.4	76
43	DNA-dependent Protein Kinase and XRCC4-DNA Ligase IV Mobilization in the Cell in Response to DNA Double Strand Breaks. Journal of Biological Chemistry, 2005, 280, 7060-7069.	3.4	129
44	Involvement of Poly(ADP-ribose) Polymerase-1 and XRCC1/DNA Ligase III in an Alternative Route for DNA Double-strand Breaks Rejoining. Journal of Biological Chemistry, 2004, 279, 55117-55126.	3.4	578
45	Longâ€patch DNA repair synthesis during base excision repair in mammalian cells. EMBO Reports, 2003, 4, 363-367.	4.5	70
46	Coordinated Assembly of Ku and p460 Subunits of the DNA-dependent Protein Kinase on DNA Ends is Necessary for XRCC4–ligase IV Recruitment. Journal of Molecular Biology, 2003, 326, 93-103.	4.2	109
47	Possible anti-recombinogenic role of Bloom's syndrome helicase in double-strand break processing. Nucleic Acids Research, 2003, 31, 6272-6282.	14.5	18
48	Inhibition of Ku heterodimer DNA end binding activity during granulocytic differentiation of human promyelocytic cell lines. Oncogene, 2001, 20, 4373-4382.	5.9	21
49	Transfer of Ku86 RNA antisense decreases the radioresistance of human fibroblasts. Cancer Gene Therapy, 2000, 7, 339-346.	4.6	40
50	Ku Entry into DNA Inhibits Inward DNA Transactions in Vitro. Journal of Biological Chemistry, 2000, 275, 35684-35691.	3.4	22
51	DNA Replication but Not Nucleotide Excision Repair Is Required for UVC-Induced Replication Protein A Phosphorylation in Mammalian Cells. Molecular and Cellular Biology, 2000, 20, 2696-2705.	2.3	34
52	Nucleotide excision repair DNA synthesis by excess DNA polymerase β: a potential source of genetic instability in cancer cells. FASEB Journal, 2000, 14, 1765-1774.	0.5	55
53	Detection of Oxidative Base DNA Damage by a New Biochemical Assay. Archives of Biochemistry and Biophysics, 2000, 376, 26-33.	3.0	33
54	The activity of the DNA-dependent protein kinase (DNA-PK) complex is determinant in the cellular response to nitrogen mustards. Biochimie, 2000, 82, 25-28.	2.6	24

#	Article	IF	CITATIONS
55	Decreased DNA-PK activity in human cancer cells exhibiting hypersensitivity to low-dose irradiation. British Journal of Cancer, 2000, 83, 514-518.	6.4	54
56	Cross-Resistance to Ionizing Radiation in a Murine Leukemic Cell Line Resistant to <i>cis</i> -Dichlorodiammineplatinum(II): Role of Ku Autoantigen. Molecular Pharmacology, 1999, 56, 141-146.	2.3	44
57	In Vitro Excision Repair Assay in Schizosaccharomyces pombe. , 1999, 113, 327-335.		0
58	The DNA-dependent Protein Kinase Catalytic Activity Regulates DNA End Processing by Means of Ku Entry into DNA. Journal of Biological Chemistry, 1999, 274, 7848-7856.	3.4	90
59	Repair of Oxidative DNA Damage In Vitro: A Tool for Screening Antioxidative Compounds. Food and Chemical Toxicology, 1999, 37, 1009-1014.	3.6	20
60	DNA damage excision repair in microplate wells with chemiluminescence detection: Development and perspectives. Biochimie, 1999, 81, 53-58.	2.6	14
61	Regulation of the DNA-dependent protein kinase (DNA-PK) activity in eukaryotic cells. Biochimie, 1999, 81, 117-125.	2.6	15
62	Human normal peripheral blood B-lymphocytes are deficient in DNA-dependent protein kinase activity due to the expression of a variant form of the Ku86 protein. Oncogene, 1998, 16, 1553-1560.	5.9	37
63	Interactions of the transcription/DNA repair factor TFIIH and XP repair proteins with DNA lesions in a cell-free repair assay. Journal of Molecular Biology, 1998, 281, 211-218.	4.2	54
64	Ku70/Ku80 protein complex inhibits the binding of nucleotide excision repair proteins on linear DNA in vitro. Journal of Molecular Biology, 1998, 284, 963-973.	4.2	14
65	UV sensitivity and impaired nucleotide excision repair in DNA-dependent protein kinase mutant cells. Nucleic Acids Research, 1998, 26, 1382-1389.	14.5	50
66	DNA repair activity in protein extracts from rat tissues. FEBS Letters, 1997, 414, 581-584.	2.8	17
67	A DNA double-strand break defective fibroblast cell line (180BR) derived from a radiosensitive patient represents a new mutant phenotype. Cancer Research, 1997, 57, 4600-7.	0.9	42
68	Preferential Repair Incision of Cross-LinksversusMonoadducts in Psoralen-Damaged Plasmid DNA by Human Cell-Free Extractsâ€. Biochemistry, 1996, 35, 14963-14969.	2.5	17
69	Double Strand Breaks in DNA Inhibit Nucleotide Excision Repair in Vitro. Journal of Biological Chemistry, 1996, 271, 27601-27607.	3.4	23
70	SHORT COMMUNICATION: Negative interference of metal (II) ions with nucleotide excision repair in human cell-free extracts. Carcinogenesis, 1996, 17, 2779-2782.	2.8	23
71	DNA repair activity in protein extracts of fresh human malignant lymphoid cells. Molecular Pharmacology, 1996, 49, 766-71.	2.3	20
72	Ku protein complex is involved in nucleotide excision repair of DNA. Comptes Rendus De L'Académie Des Sciences SA©rie 3, Sciences De La Vie, 1996, 319, 179-82.	0.8	2

#	Article	IF	CITATIONS
73	A Chemiluminescent Microplate Assay to Detect DNA Damage Induced by Genotoxic Treatments. Analytical Biochemistry, 1995, 232, 37-42.	2.4	36
74	Deficient nucleotide excision repair activity in protein extracts from normal human lymphocytes. Carcinogenesis, 1995, 16, 1611-1616.	2.8	35
75	In vitro eukaryotic DNA excision repair assays: An overview. Biochimie, 1995, 77, 796-802.	2.6	24
76	Properties of damage-dependent DNA incision by nucleotide excision repair in human cell-free extracts. Nucleic Acids Research, 1994, 22, 4937-4942.	14.5	34
77	Multiple mechanisms of resistance to cisplatin toxicity in an Escherichia coli K12 mutant. Toxicology, 1994, 93, 235-247.	4.2	7
78	UV Induction of Excision Repair Enzymes Detected in Protein Extracts from Schizosaccharomyces pombe. Biochemical and Biophysical Research Communications, 1994, 198, 770-779.	2.1	6
79	Measurement of Damage-Specific DNA Incision by Nucleotide Excision Repair in Vitro. Biochemical and Biophysical Research Communications, 1994, 202, 788-795.	2.1	21
80	A cisplatin-resistant murine leukemia cell line exhibits increased topoisomerase II activity. Molecular Pharmacology, 1994, 46, 431-6.	2.3	20
81	Rapid Quantification of DNA Repair Synthesis in Cell Extracts. Analytical Biochemistry, 1993, 215, 304-306.	2.4	6
82	Role of DNA repair in the mechanisms of cell resistance to alkylating agents and cisplatin. Cancer Chemotherapy and Pharmacology, 1993, 32, 85-89.	2.3	49
83	DNA excision-repair synthesis is enhanced in a murine leukemia L1210 cell line resistant to cisplatin. FEBS Journal, 1993, 211, 403-409.	0.2	15
84	Repair synthesis by human cell extracts in cisplatin damaged DNA is preferentially determined by minor adducts. Nucleic Acids Research, 1992, 20, 6363-6368.	14.5	39
85	In vitro evolution of cisplatin/DNA monoadducts into diadducts is dependent upon superhelical density. Biochemical and Biophysical Research Communications, 1992, 189, 111-118.	2.1	12
86	Involvement of glutathione in cis-platinum toxicity in Escherichia coli K12. Toxicology, 1992, 72, 341-350.	4.2	8
87	UV resistance of E. coli K-12 deficient in cAMP/CRP regulation. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 1992, 282, 247-252.	1.1	8
88	Heat-inducible reactivation of UV-damaged bacteriophage λ. Molecular Genetics and Genomics, 1991, 226-226, 113-119.	2.4	7
89	Modification of deoxyribose-phosphate residues by extracts of ataxia telangiectasia cells. Mutation Research DNA Repair, 1990, 236, 19-26.	3.7	8
90	Activated RecA protein may induce expression of a gene that is not controlled by the LexA repressor and whose function is required for mutagenesis and repair of UV-irradiated bacteriophage lambda. Journal of Bacteriology, 1987, 169, 4816-4821.	2.2	16

#	Article	IF	CITATIONS
91	Weigle reactivation and mutagenesis of bacteriophage λ in lexA(Def) mutants of E. coli K12. Molecular Genetics and Genomics, 1985, 201, 329-333.	2.4	21
92	RECA immunological assay as a tool to analyze the SOS response. Biochimie, 1985, 67, 349-352.	2.6	1
93	Regulation of the SOS response analyzed by RecA protein amplification. Journal of Bacteriology, 1985, 162, 1162-1165.	2.2	8