Francisco M Goycoolea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1412989/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An infrared investigation in relation with chitin and chitosan characterization. Polymer, 2001, 42, 3569-3580.	3.8	1,132
2	Astaxanthin: A Review of its Chemistry and Applications. Critical Reviews in Food Science and Nutrition, 2006, 46, 185-196.	10.3	981
3	Chitosan-Alginate Blended Nanoparticles as Carriers for the Transmucosal Delivery of Macromolecules. Biomacromolecules, 2009, 10, 1736-1743.	5.4	210
4	Parameters influencing the size of chitosan-TPP nano- and microparticles. Scientific Reports, 2018, 8, 4695.	3.3	190
5	Effect of chitosan coating in preventing deterioration and preserving the quality of freshâ€cut papaya â€~Maradol'. Journal of the Science of Food and Agriculture, 2009, 89, 15-23.	3.5	162
6	Microencapsulation of astaxanthin in a chitosan matrix. Carbohydrate Polymers, 2004, 56, 41-45.	10.2	142
7	Structure of Chitosan Determines Its Interactions with Mucin. Biomacromolecules, 2014, 15, 3550-3558.	5.4	134
8	Antibacterial and free-radical scavenging activities of Sonoran propolis. Journal of Applied Microbiology, 2007, 103, 1747-1756.	3.1	131
9	On the gelling behaviour of â€~nopal' (Opuntia ficus indica) low methoxyl pectin. Carbohydrate Polymers, 2008, 73, 212-222.	10.2	116
10	Viscosity of galactomannans at alkaline and neutral pH: evidence of â€~hyperentanglement' in solution. Carbohydrate Polymers, 1995, 27, 69-71.	10.2	115
11	Stoichiometry and Conformation of Xanthan in Synergistic Gelation with Locust Bean Gum or Konjac Glucomannan: Evidence for Heterotypic Binding. Macromolecules, 1995, 28, 8308-8320.	4.8	105
12	Physicochemical and biological characterization of chitosan-microRNA nanocomplexes for gene delivery to MCF-7 breast cancer cells. Scientific Reports, 2015, 5, 13567.	3.3	93
13	Rheology of okra (Hibiscus esculentus L.) and dika nut (Irvingia gabonensis) polysaccharides. Carbohydrate Polymers, 1996, 29, 263-269.	10.2	92
14	Electrostatic Self-Assembled Chitosan-Pectin Nano- and Microparticles for Insulin Delivery. Molecules, 2017, 22, 1707.	3.8	90
15	Sonoran Propolis: Chemical Composition and Antiproliferative Activity on Cancer Cell Lines. Planta Medica, 2007, 73, 1469-1474.	1.3	86
16	Biophysical Analysis of the Molecular Interactions between Polysaccharides and Mucin. Biomacromolecules, 2015, 16, 924-935.	5.4	85
17	Chitin and Chitosan: Major Sources, Properties and Applications. , 2008, , 517-542.		84
18	Chitosan in Non-Viral Gene Delivery: Role of Structure, Characterization Methods, and Insights in Cancer and Rare Diseases Therapies. Polymers, 2018, 10, 444.	4.5	83

FRANCISCO M GOYCOOLEA

#	Article	IF	CITATIONS
19	Pickering emulsions co-stabilized by composite protein/ polysaccharide particle-particle interfaces: Impact on in vitro gastric stability. Food Hydrocolloids, 2018, 84, 282-291.	10.7	83
20	Zeta potential and drop growth of oil in water emulsions stabilized with mesquite gum. Carbohydrate Polymers, 2006, 65, 327-336.	10.2	82
21	Interaction Between Chitosan and Mucin: Fundamentals and Applications. Biomimetics, 2019, 4, 32.	3.3	82
22	Systemic heparin delivery by the pulmonary route using chitosan and glycol chitosan nanoparticles. International Journal of Pharmaceutics, 2013, 447, 115-123.	5.2	77
23	Innovative Methods and Applications in Mucoadhesion Research. Macromolecular Bioscience, 2017, 17, 1600534.	4.1	77
24	Thermoresponsive Behavior of Chitosan- <i>g</i> - <i>N</i> -isopropylacrylamide Copolymer Solutions. Biomacromolecules, 2009, 10, 1633-1641.	5.4	76
25	Chitosan encapsulation modulates the effect of capsaicin on the tight junctions of MDCK cells. Scientific Reports, 2015, 5, 10048.	3.3	76
26	Solution rheology of mesquite gum in comparison with gum arabic. Carbohydrate Polymers, 1995, 27, 37-45.	10.2	73
27	Development of electrosprayed mucoadhesive chitosan microparticles. Carbohydrate Polymers, 2018, 190, 240-247.	10.2	73
28	Chitosan nanocapsules: Effect of chitosan molecular weight and acetylation degree on electrokinetic behaviour and colloidal stability. Colloids and Surfaces B: Biointerfaces, 2011, 82, 571-580.	5.0	72
29	Preparation of chitosan nanoparticles by nanoprecipitation and their ability as a drug nanocarrier. RSC Advances, 2016, 6, 59250-59256.	3.6	72
30	N-(furfural) chitosan hydrogels based on Diels–Alder cycloadditions and application as microspheres for controlled drug release. Carbohydrate Polymers, 2015, 128, 220-227.	10.2	71
31	Rheological measurement of κ-carrageenan during gelation. Carbohydrate Polymers, 1994, 24, 223-225.	10.2	66
32	Chitosan-based nanocapsules: physical characterization, stability in biological media and capsaicin encapsulation. Colloid and Polymer Science, 2012, 290, 1423-1434.	2.1	66
33	Protein delivery based on uncoated and chitosan-coated mesoporous silicon microparticles. Colloids and Surfaces B: Biointerfaces, 2011, 88, 601-609.	5.0	65
34	Molecularly Imprinted Chitosanâ^'Genipin Hydrogels with Recognition Capacity toward <i>o</i> -Xylene. Biomacromolecules, 2007, 8, 3355-3364.	5.4	64
35	Formulation of polysaccharide-based nanoparticles for local administration into the oral cavity. European Journal of Pharmaceutical Sciences, 2017, 96, 381-389.	4.0	64
36	Effect of Chemical Crosslinking on the Swelling and Shrinking Properties of Thermal and pH-Responsive Chitosan Hydrogels. Macromolecular Bioscience, 2003, 3, 612-619.	4.1	59

FRANCISCO M GOYCOOLEA

#	Article	IF	CITATIONS
37	Self-assembled amphiphilic chitosan nanoparticles for quercetin delivery to breast cancer cells. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 131, 203-210.	4.3	58
38	A new drug nanocarrier consisting of polyarginine and hyaluronic acid. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 54-57.	4.3	55
39	Chitosanâ^'Cholesterol and Chitosanâ^'Stearic Acid Interactions at the Airâ^'Water Interfaceâ€. Biomacromolecules, 2005, 6, 2416-2426.	5.4	54
40	Determination of Chitin and Protein Contents During the Isolation of Chitin from Shrimp Waste. Macromolecular Bioscience, 2006, 6, 340-347.	4.1	53
41	A modified Boltzmann sigmoidal model for the phase transition of smart gels. Soft Matter, 2011, 7, 5847.	2.7	50
42	On the role of alginate structure in complexing with lysozyme andÂapplication for enzyme delivery. Food Hydrocolloids, 2016, 53, 239-248.	10.7	48
43	A Chitosan—Based Liposome Formulation Enhances the In Vitro Wound Healing Efficacy of Substance P Neuropeptide. Pharmaceutics, 2017, 9, 56.	4.5	48
44	Synergistic effect of quercetin and pH-responsive DEAE-chitosan carriers as drug delivery system for breast cancer treatment. International Journal of Biological Macromolecules, 2018, 106, 579-586.	7.5	48
45	Effect of locust bean gum and konjac glucomannan oh the conformation and rheology of agarose and ?-carrageenan. Biopolymers, 1995, 36, 643-658.	2.4	45
46	Characterization and Antiproliferative Activity of Nobiletin-Loaded Chitosan Nanoparticles. Journal of Nanomaterials, 2012, 2012, 1-7.	2.7	44
47	Chitosan nanoencapsulation of flavonoids enhances their quorum sensing and biofilm formation inhibitory activities against an E.coli Top 10 biosensor. Colloids and Surfaces B: Biointerfaces, 2018, 164, 125-133.	5.0	44
48	Effect of the molecular architecture on the thermosensitive properties of chitosan-g-poly(N-vinylcaprolactam). Carbohydrate Polymers, 2015, 134, 92-101.	10.2	43
49	Immunological and functional properties of the exudate gum from northwestern Mexican mesquite (Prosopis spp.) in comparison with gum arabic. International Journal of Biological Macromolecules, 1997, 21, 29-36.	7.5	42
50	Temperature and pH-sensitive chitosan hydrogels: DSC, rheological and swelling evidence of a volume phase transition. Polymer Bulletin, 2007, 58, 225-234.	3.3	41
51	Classification and physicochemical characterization of mesquite gum (Prosopis spp.). Food Hydrocolloids, 2012, 26, 159-166.	10.7	40
52	Associative phenomena in galactomannan-deacetylated xanthan systems. International Journal of Biological Macromolecules, 2001, 29, 181-192.	7.5	39
53	Electrostatic self-assembly of polysaccharides into nanofibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 531, 182-188.	4.7	39
54	Linseed pectin: gelling properties and performance as an encapsulation matrix for shark liver oil. Food Hydrocolloids, 2004, 18, 293-304.	10.7	38

#	Article	IF	CITATIONS
55	Pickering emulsion stabilized by cashew gum- poly-l-lactide copolymer nanoparticles: Synthesis, characterization and amphotericin B encapsulation. Colloids and Surfaces B: Biointerfaces, 2018, 164, 201-209.	5.0	36
56	Smart drug delivery against Helicobacter pylori: pectin-coated, mucoadhesive liposomes with antiadhesive activity and antibiotic cargo. Applied Microbiology and Biotechnology, 2020, 104, 5943-5957.	3.6	36
57	Screening for synergistic interactions in dilute polysaccharide solutions. Carbohydrate Polymers, 1995, 28, 351-358.	10.2	35
58	Diffusion Through Membranes of the Polyelectrolyte Complex of Chitosan and Alginate. Macromolecular Bioscience, 2003, 3, 535-539.	4.1	35
59	Physical properties and antibacterial activity of chitosan/acemannan mixed systems. Carbohydrate Polymers, 2015, 115, 707-714.	10.2	35
60	Chitosan/Cyclodextrin/TPP Nanoparticles Loaded with Quercetin as Novel Bacterial Quorum Sensing Inhibitors. Molecules, 2017, 22, 1975.	3.8	35
61	Chitosan-based nanodelivery systems applied to the development of novel triclabendazole formulations. PLoS ONE, 2018, 13, e0207625.	2.5	34
62	An investigation of the interactions between an E. coli bacterial quorum sensing biosensor and chitosan-based nanocapsules. Colloids and Surfaces B: Biointerfaces, 2017, 149, 358-368.	5.0	33
63	Ethnobotanical survey of traditionally used medicinal plants for infections of skin, gastrointestinal tract, urinary tract and the oral cavity in Borabu sub-county, Nyamira county, Kenya. Journal of Ethnopharmacology, 2015, 176, 508-514.	4.1	32
64	Self-assembled high molecular weight inulin nanoparticles: Enzymatic synthesis, physicochemical and biological properties. Carbohydrate Polymers, 2019, 215, 160-169.	10.2	32
65	Chitosan/Sterculia striata polysaccharides nanocomplex as a potential chloroquine drug release device. International Journal of Biological Macromolecules, 2016, 88, 244-253.	7.5	31
66	Macromolecular Dimensions and Mechanical Properties of Monolayer Films of Sonorean Mesquite Gum. Macromolecular Bioscience, 2004, 4, 865-874.	4.1	30
67	Chitosan as a non-viral co-transfection system in a cystic fibrosis cell line. International Journal of Pharmaceutics, 2016, 502, 1-9.	5.2	30
68	Kinetics of Gelation and Thermal Sensitivity of N-Isobutyryl Chitosan Hydrogelsâ€. Biomacromolecules, 2005, 6, 2408-2415.	5.4	29
69	Aqueous extract from Orthosiphon stamineus leaves prevents bladder and kidney infection in mice. Phytomedicine, 2017, 28, 1-9.	5.3	29
70	Nanocapsules of Sterculia striata acetylated polysaccharide as a potential monomeric amphotericin B delivery matrix. International Journal of Biological Macromolecules, 2019, 130, 655-663.	7.5	28
71	A rational approach towards the design of chitosan-based nanoparticles obtained by ionotropic gelation. Colloids and Surfaces B: Biointerfaces, 2015, 135, 99-108.	5.0	27
72	Antiquorum sensing, antibiofilm formation and cytotoxicity activity of commonly used medicinal plants by inhabitants of Borabu sub-county, Nyamira County, Kenya. PLoS ONE, 2017, 12, e0185722.	2.5	27

#	Article	IF	CITATIONS
73	pH―and Temperatureâ€Sensitive Chitosan Hydrogels: Swelling and MRI Studies. Macromolecular Chemistry and Physics, 2011, 212, 887-895.	2.2	26
74	Recent Trends in the Development of Chitosan-Based Drug Delivery Systems. AAPS PharmSciTech, 2017, 18, 933-935.	3.3	26
75	Small-deformation rheology of mesquite gum stabilized oil in water emulsions. Carbohydrate Polymers, 2006, 64, 205-211.	10.2	25
76	Immobilization of Hydrophilic Low Molecular-Weight Molecules in Nanoparticles of Chitosan/Poly(sodium 4-styrenesulfonate) Assisted by Aromatic–Aromatic Interactions. Journal of Physical Chemistry B, 2014, 118, 9782-9791.	2.6	25
77	Development of amphotericin B-loaded propionate Sterculia striata polysaccharide nanocarrier. International Journal of Biological Macromolecules, 2020, 146, 1133-1141.	7.5	25
78	Differences of the tumour cell glycocalyx affect binding of capsaicin-loaded chitosan nanocapsules. Scientific Reports, 2020, 10, 22443.	3.3	25
79	In Vitro and Sensory Evaluation of Capsaicin-Loaded Nanoformulations. PLoS ONE, 2015, 10, e0141017.	2.5	24
80	Supercritical CO ₂ dried chitosan nanoparticles: production and characterization. RSC Advances, 2017, 7, 30879-30885.	3.6	24
81	Extraction and physicochemical characterization of galactomannans from Dichrostachys cinerea seeds. Food Hydrocolloids, 2018, 82, 451-456.	10.7	24
82	Polysaccharides as Bacterial Antiadhesive Agents and "Smart―Constituents for Improved Drug Delivery Systems Against Helicobacter pylori Infection. Current Pharmaceutical Design, 2015, 21, 4888-4906.	1.9	24
83	Polysaccharide-Protein Nanoassemblies: Novel Soft Materials for Biomedical and Biotechnological Applications. Current Protein and Peptide Science, 2015, 16, 89-99.	1.4	24
84	Effects of polysaccharide isolated from Streptococcus thermophilus CRL1190 on human gastric epithelial cells. International Journal of Biological Macromolecules, 2013, 62, 217-224.	7.5	23
85	Effect of β-Lactoglobulin A and B Whey Protein Variants on the Rennet-Induced Gelation of Skim Milk Gels in a Model Reconstituted Skim Milk System. Journal of Dairy Science, 2007, 90, 582-593.	3.4	22
86	Structural Characterization of Mesquite (<i>Prosopis velutina</i>) Gum and its Fractions. Macromolecular Bioscience, 2008, 8, 749-757.	4.1	22
87	Thermo- and pH-responsive polyelectrolyte complex membranes from chitosan-g-N-isopropylacrylamide and pectin. Carbohydrate Polymers, 2011, 86, 1336-1343.	10.2	22
88	Chitin and chitosan. Developments in Food Science, 2000, 41, 265-308.	0.0	21
89	Physical Properties and Stability of Soft Gelled Chitosanâ€Based Nanoparticles. Macromolecular Bioscience, 2016, 16, 1873-1882.	4.1	21
90	Self-assembling cashew gum-graft-polylactide copolymer nanoparticles as a potential amphotericin B delivery matrix. International Journal of Biological Macromolecules, 2020, 152, 492-502.	7.5	21

Francisco M Goycoolea

#	Article	IF	CITATIONS
91	Substituent effects on the 31P NMR chemical shifts of arylphosphorothionates. Tetrahedron, 2006, 62, 2520-2528.	1.9	20
92	Furan–chitosan hydrogels based on click chemistry. Iranian Polymer Journal (English Edition), 2015, 24, 349-357.	2.4	20
93	Selfâ€aggregated nanoparticles of <i>N</i> â€dodecyl, <i>N</i> ′â€glycidyl(chitosan) as pHâ€responsive drug delivery systems for quercetin. Journal of Applied Polymer Science, 2018, 135, 45678.	2.6	20
94	Characterisation of chitosan molecular weight distribution by multi-detection asymmetric flow-field flow fractionation (AF4) and SEC. International Journal of Biological Macromolecules, 2019, 136, 911-919.	7.5	20
95	HS2ST1â€dependent signaling pathways determine breast cancer cell viability, matrix interactions, and invasive behavior. Cancer Science, 2020, 111, 2907-2922.	3.9	19
96	Chitosan encapsulation modulates the effect of trans -cinnamaldehyde on AHL-regulated quorum sensing activity. Colloids and Surfaces B: Biointerfaces, 2018, 169, 453-461.	5.0	18
97	Capsaicin-Loaded Chitosan Nanocapsules for wtCFTR-mRNA Delivery to a Cystic Fibrosis Cell Line. Biomedicines, 2020, 8, 364.	3.2	18
98	Antiadhesive hydroalcoholic extract from Apium graveolens fruits prevents bladder and kidney infection against uropathogenic E. coli. Fìtoterapìâ, 2018, 127, 237-244.	2.2	17
99	Production and characterization of supercritical CO2 dried chitosan nanoparticles as novel carrier device. Carbohydrate Polymers, 2018, 198, 556-562.	10.2	17
100	Package, Temperature and TBHQ Effects on Oxidative Deterioration of Corn-based Snacks. Journal of Food Science, 1992, 57, 112-117.	3.1	16
101	Response time and electrorheology of semidiluted gellan, xanthan and cellulose suspensions. Carbohydrate Polymers, 2002, 48, 413-421.	10.2	16
102	Electrokinetic behavoir of chitosan adsorbed on o/w nanoemulsion droplets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 519, 205-211.	4.7	16
103	Aptamer–Target–Gold Nanoparticle Conjugates for the Quantification of Fumonisin B1. Biosensors, 2021, 11, 18.	4.7	16
104	Development and characterization of nanocapsules comprising dodecyltrimethylammonium chloride and κ-carrageenan. Colloids and Surfaces B: Biointerfaces, 2011, 86, 242-246.	5.0	15
105	Nanoencapsulated capsaicin changes migration behavior and morphology of madin darby canine kidney cell monolayers. PLoS ONE, 2017, 12, e0187497.	2.5	15
106	Iron-rich chitosan-pectin colloidal microparticles laden with ora-pro-nobis (Pereskia aculeata Miller) extract. Food Hydrocolloids, 2020, 98, 105313.	10.7	15
107	Agronomic Cultivation, Chemical Composition, Functional Activities and Applications of Pereskia Species – A Mini Review. Current Medicinal Chemistry, 2019, 26, 4573-4584.	2.4	15
108	Affinity Protein-Based FRET Tools for Cellular Tracking of Chitosan Nanoparticles and Determination of the Polymer Degree of Acetylation. Biomacromolecules, 2014, 15, 2532-2539.	5.4	14

#	Article	IF	CITATIONS
109	Synthetic homoserine lactone analogues as antagonists of bacterial quorum sensing. Bioorganic Chemistry, 2020, 98, 103698.	4.1	14
110	Interfacial Behavior ofN-Nitrosodiethylamine/Bovine Serum Albumin Complexes at the Airâ^'Water and the Chloroformâ^'Water Interfaces by Axisymmetric Drop Tensiometry. Journal of Physical Chemistry B, 2007, 111, 2727-2735.	2.6	13
111	Co-assembly of chitosan and phospholipids into hybrid hydrogels. Pure and Applied Chemistry, 2016, 88, 905-916.	1.9	13
112	Mesoscopic Modeling of the Encapsulation of Capsaicin by Lecithin/Chitosan Liposomal Nanoparticles. Nanomaterials, 2018, 8, 425.	4.1	13
113	The Influence of Capsaicin on the Integrity of Microvascular Endothelial Cell Monolayers. International Journal of Molecular Sciences, 2019, 20, 122.	4.1	13
114	Aptamer-based detection of fumonisin B1: A critical review. Analytica Chimica Acta, 2021, 1160, 338395.	5.4	13
115	Gelation processes in the non-stoichiometric polylectrolyte–surfactant complex between κ-carrageenan and dodecyltrimethylammonium chloride in KCl. Soft Matter, 2011, 7, 2103.	2.7	12
116	Physico-chemical characteristics and primary structure of an affinity-purified α-D-galactose-specific, jacalin-related lectin from the latex of mulberry (Morus indica). Archives of Biochemistry and Biophysics, 2016, 609, 59-68.	3.0	12
117	The Effect of Capsaicin Derivatives on Tight-Junction Integrity and Permeability of Madin-Darby Canine Kidney Cells. Journal of Pharmaceutical Sciences, 2016, 105, 630-638.	3.3	12
118	A quality by design approach for optimization of Lecithin/Span® 80 based nanoemulsions loaded with hydrophobic drugs. Journal of Molecular Liquids, 2021, 321, 114743.	4.9	11
119	Chitosan/cyclodextrin surface-adsorbed naringenin-loaded nanocapsules enhance bacterial quorum quenching and anti-biofilm activities. Colloids and Surfaces B: Biointerfaces, 2022, 211, 112281.	5.0	11
120	Influence of N-Deacetylation Conditions on Chitosan Production from α-Chitin. Natural Product Communications, 2008, 3, 1934578X0800300.	0.5	10
121	Effect of the ultrastructure of chitosan nanoparticles in colloidal stability, quorum quenching and antibacterial activities. Journal of Colloid and Interface Science, 2019, 556, 592-605.	9.4	10
122	Encapsulation of caffeine in polysaccharide oil-core nanocapsules. Colloid and Polymer Science, 2020, 298, 1035-1041.	2.1	10
123	Conformational study on the thermal transition of chitosan-g-poly(N-vinylcaprolactam) in aqueous solution. Colloid and Polymer Science, 2016, 294, 555-563.	2.1	9
124	Physicochemical Characterization of FRET-Labelled Chitosan Nanocapsules and Model Degradation Studies. Nanomaterials, 2018, 8, 846.	4.1	9
125	Covalently and ionically, dually crosslinked chitosan nanoparticles block quorum sensing and affect bacterial cell growth on a cell-density dependent manner. Journal of Colloid and Interface Science, 2020, 578, 171-183.	9.4	9
126	Chitosan Nanocomplexes for the Delivery of ENaC Antisense Oligonucleotides to Airway Epithelial Cells. Biomolecules, 2020, 10, 553.	4.0	9

#	Article	IF	CITATIONS
127	HETEROTYPIC INTERACTIONS OF DEACETYLATED XANTHAN WITH A GALACTOMANNAN OF HIGH GALACTOSE SUBSTITUTION DURING SYNERGISTIC GELATION. , 2000, , 229-240.		8
128	Chitosan coatings reduce fruit fly (<scp><i>Anastrepha obliqua</i></scp>) infestation and development of the fungus <i>Colletotrichum gloeosporioides</i> in Manila mangoes. Journal of the Science of Food and Agriculture, 2021, 101, 2756-2766.	3.5	8
129	Chitin and Chitosan in Gel Network Systems. ACS Symposium Series, 2002, , 102-121.	0.5	7
130	New insights into the nature of the Cibacron brilliant red 3B-A – Chitosan interaction. Pure and Applied Chemistry, 2016, 88, 891-904.	1.9	7
131	Assessment of the Quorum Sensing Inhibition Activity of a Non-Toxic Chitosan in an N-Acyl Homoserine Lactone (AHL)-Based Escherichia coli Biosensor. Biomolecules, 2018, 8, 87.	4.0	7
132	Acemannan Gels and Aerogels. Polymers, 2019, 11, 330.	4.5	7
133	Fractionation and Characterization of the Monosaccharides from Mesquite Prosopis spp. and Arabic Gum by Normal, Bonded Phase, HPLC. Journal of Liquid Chromatography and Related Technologies, 2006, 29, 1991-1999.	1.0	6
134	Chitosan-polysaccharide blended nanoparticles for controlled drug delivery. , 2008, , 644-679.		6
135	Design and characterization of self-assembled fish sarcoplasmic protein–alginate nanocomplexes. International Journal of Biological Macromolecules, 2015, 76, 146-152.	7.5	6
136	Low-Molecular-Weight Dextran Sulfate Nanocapsules Inhibit the Adhesion of Helicobacter pylori to Gastric Cells. ACS Applied Bio Materials, 2019, 2, 4777-4789.	4.6	6
137	Screening of Bacterial Quorum Sensing Inhibitors in a Vibrio fischeri LuxR-Based Synthetic Fluorescent E. coli Biosensor. Pharmaceuticals, 2020, 13, 263.	3.8	6
138	Structural characterization of the carbohydrate and protein part of arabinogalactan protein from Basella alba stem and antiadhesive activity of polysaccharides from B. alba against Helicobacter pylori. Fìtoterapìâ, 2022, 157, 105132.	2.2	6
139	Extraction, purification and characterization of water soluble galactomannans from Mimosa pudica seeds. The EuroBiotech Journal, 2017, 1, 303-309.	1.0	5
140	Characterisation of the Interaction among Oil-In-Water Nanocapsules and Mucin. Biomimetics, 2020, 5, 36.	3.3	5
141	Selective recovery of lithium from spent coin cell cathode leachates using ion imprinted blended chitosan microfibers: Pilot scale studies provide insights on scalability. Journal of Hazardous Materials, 2022, 431, 128535.	12.4	5
142	SYBR Gold Fluorescence Quenching is a Sensitive Probe of Chitosan-microRNA Interactions. Journal of Fluorescence, 2016, 26, 37-42.	2.5	4
143	Synthesis of regioselective chitosan copolymers with β-cyclodextrin and poly(N-isopropyl acrylamide). Journal of Polymer Research, 2020, 27, 1.	2.4	4
144	Immunochemical, Structural and Functional Properties of Mesquite Gum Compared with Gum Arabic. , 2000, , 263-276.		3

Francisco M Goycoolea

#	Article	IF	CITATIONS
145	Genipin cross-linked chitosan for signal enhancement in the colorimetric detection of aflatoxin B1 on 3MM chromatography paper. Sensing and Bio-Sensing Research, 2020, 29, 100339.	4.2	3
146	Specific methods for the analysis of identity and purity of functional food polysaccharides. Developments in Food Science, 1998, , 99-140.	0.0	2
147	Nanostructures Overcoming the Nasal Barrier: Protein and Peptide Delivery Strategies. RSC Drug Discovery Series, 2012, , 133-155.	0.3	2
148	Interfacial Properties of B Phycoerythrin Extracted from the Red Microalga <i>Rhodosorus Marinus</i> at Hexadecane-Water and Air-Water Interfaces. Science of Advanced Materials, 2011, 3, 259-268.	0.7	2
149	Short-time acoustic and hydrodynamic cavitation improves dispersibility and functionality of pectin-rich biopolymers from citrus waste Journal of Cleaner Production, 2022, 330, 129789.	9.3	2
150	Chitin and Chitosan - Highlights from the Chitin Symposium 2002 in Acapulco, Mexico. Macromolecular Bioscience, 2003, 3, 510-510.	4.1	0
151	Interfacial Properties Of The Fluorescent Protein B-phycoerythrin Extracted From The Red Microalga Rhodosorus Marinus. Biophysical Journal, 2009, 96, 603a.	0.5	0
152	12th International Conference of the European Chitin Society and 13th International Conference on Chitin and Chitosan (EUCHIS/ICCC 2015). Pure and Applied Chemistry, 2016, 88, 841-842.	1.9	0
153	Nanocapsule induced morphology and migration changes in single cell layers quantified with digital holographic microscopy. , 2019, , .		0