
Daphne R Goring

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/141273/publications.pdf Version: 2024-02-01

DADHNE P CODINC

#	Article	IF	CITATIONS
1	Cell–cell signaling during the Brassicaceae self-incompatibility response. Trends in Plant Science, 2022, 27, 472-487.	8.8	26
2	Autophagy is required for self-incompatible pollen rejection in two transgenic <i>Arabidopsis thaliana</i> accessions. Plant Physiology, 2022, 188, 2073-2084.	4.8	12
3	The role of autophagy in the <i>Arabidopsis</i> self-incompatible pollen rejection response. , 2022, 1, 183-186.		1
4	Two subgroups of receptor-like kinases promote early compatible pollen responses in the <i>Arabidopsis thaliana</i> pistil. Journal of Experimental Botany, 2021, 72, 1198-1211.	4.8	19
5	A Toolkit for Teasing Apart the Early Stages of Pollen–Stigma Interactions in Arabidopsis thaliana. Methods in Molecular Biology, 2020, 2160, 13-28.	0.9	9
6	The Molecular and Cellular Regulation of Brassicaceae Self-Incompatibility and Self-Pollen Rejection. International Review of Cell and Molecular Biology, 2019, 343, 1-35.	3.2	52
7	Identification of a role for an E6-like 1 gene in early pollen–stigma interactions in Arabidopsis thaliana. Plant Reproduction, 2019, 32, 307-322.	2.2	22
8	Generation of Transgenic Self-Incompatible Arabidopsis thaliana Shows a Genus-Specific Preference for Self-Incompatibility Genes. Plants, 2019, 8, 570.	3.5	19
9	Investigations into a putative role for the novel BRASSIKIN pseudokinases in compatible pollen-stigma interactions in Arabidopsis thaliana. BMC Plant Biology, 2019, 19, 549.	3.6	12
10	Protein and membrane trafficking routes in plants: conventional or unconventional?. Journal of Experimental Botany, 2018, 69, 1-5.	4.8	22
11	Exocyst, exosomes, and autophagy in the regulation of Brassicaceae pollen-stigma interactions. Journal of Experimental Botany, 2018, 69, 69-78.	4.8	31
12	Dominance modifier: Expanding mate options. Nature Plants, 2017, 3, 16210.	9.3	2
13	Yeast two-hybrid interactions between <i>Arabidopsis lyrata S</i> Receptor Kinase and the ARC1 E3 ligase. Plant Signaling and Behavior, 2016, 11, e1188233.	2.4	14
14	Following the Time-Course of Post-pollination Events by Transmission Electron Microscopy (TEM): Buildup of Exosome-Like Structures with Compatible Pollinations. Methods in Molecular Biology, 2016, 1459, 91-101.	0.9	0
15	Pollen Acceptance or Rejection: A Tale of Two Pathways. Trends in Plant Science, 2016, 21, 1058-1067.	8.8	90
16	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
17	PERK–KIPK–KCBP signalling negatively regulates root growth in Arabidopsis thaliana. Journal of Experimental Botany, 2015, 66, 71-83.	4.8	42
18	RNA silencing of exocyst genes in the stigma impairs the acceptance of compatible pollen in Arabidopsis. Plant Physiology, 2015, 169, pp.00635.2015.	4.8	52

DAPHNE R GORING

#	Article	IF	CITATIONS
19	Autophagy in the rejection of self-pollen in the mustard family. Autophagy, 2014, 10, 2379-2380.	9.1	3
20	A conserved role for the ARC1 E3 ligase in Brassicaceae self-incompatibility. Frontiers in Plant Science, 2014, 5, 181.	3.6	29
21	Reversible ubiquitylation in plant biology. Frontiers in Plant Science, 2014, 5, 707.	3.6	2
22	The ARC1 E3 Ligase Promotes a Strong and Stable Self-Incompatibility Response in <i>Arabidopsis</i> Species: Response to the Nasrallah and Nasrallah Commentary. Plant Cell, 2014, 26, 3842-3846.	6.6	25
23	High humidity partially rescues the Arabidopsis thaliana exo70A1 stigmatic defect for accepting compatible pollen. Plant Reproduction, 2014, 27, 121-127.	2.2	33
24	The ARC1 E3 Ligase Promotes Two Different Self-Pollen Avoidance Traits in <i>Arabidopsis</i> Â Â. Plant Cell, 2014, 26, 1525-1543.	6.6	64
25	Signaling Events in Pollen Acceptance or Rejection in the Arabidopsis Species. , 2014, , 255-271.		2
26	Secretory Activity Is Rapidly Induced in Stigmatic Papillae by Compatible Pollen, but Inhibited for Self-Incompatible Pollen in the Brassicaceae. PLoS ONE, 2013, 8, e84286.	2.5	84
27	The <i>ARC1</i> E3 Ligase Gene Is Frequently Deleted in Self-Compatible Brassicaceae Species and Has a Conserved Role in <i>Arabidopsis lyrata</i> Self-Pollen Rejection. Plant Cell, 2012, 24, 4607-4620.	6.6	94
28	The Regulation of Pollen–Pistil Interactions by Receptor-Like Kinases. Signaling and Communication in Plants, 2012, , 125-143.	0.7	0
29	Misregulation of phosphoinositides in Arabidopsis thaliana decreases pollen hydration and maternal fertility. Sexual Plant Reproduction, 2011, 24, 319-326.	2.2	15
30	Proteomic Analysis of Brassica Stigmatic Proteins Following the Self-incompatibility Reaction Reveals a Role for Microtubule Dynamics During Pollen Responses. Molecular and Cellular Proteomics, 2011, 10, M111.011338.	3.8	56
31	Altered Germination and Subcellular Localization Patterns for PUB44/SAUL1 in Response to Stress and Phytohormone Treatments. PLoS ONE, 2011, 6, e21321.	2.5	43
32	Characterization of the <i>Arabidopsis thaliana</i> exocyst complex gene families by phylogenetic, expression profiling, and subcellular localization studies. New Phytologist, 2010, 185, 401-419.	7.3	77
33	How plants avoid incest. Nature, 2010, 466, 926-927.	27.8	6
34	Pollen-pistil interactions regulating successful fertilization in the Brassicaceae. Journal of Experimental Botany, 2010, 61, 1987-1999.	4.8	116
35	Pollen Gets More Complex. Science, 2010, 330, 767-768.	12.6	1
36	The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates. Journal of Experimental Botany, 2009, 60, 1109-1121.	4.8	253

DAPHNE R GORING

#	Article	IF	CITATIONS
37	Cellular Pathways Regulating Responses to Compatible and Self-Incompatible Pollen in <i>Brassica</i> and <i>Arabidopsis</i> Stigmas Intersect at Exo70A1, a Putative Component of the Exocyst Complex. Plant Cell, 2009, 21, 2655-2671.	6.6	259
38	Self/nonself perception and recognition mechanisms in plants: a comparison of selfâ€incompatibility and innate immunity. New Phytologist, 2008, 178, 503-514.	7.3	101
39	Interactions between the <i>S</i> -Domain Receptor Kinases and AtPUB-ARM E3 Ubiquitin Ligases Suggest a Conserved Signaling Pathway in Arabidopsis Â. Plant Physiology, 2008, 147, 2084-2095.	4.8	136
40	Sentinels at the wall: cell wall receptors and sensors. New Phytologist, 2007, 176, 7-21.	7.3	189
41	Multifunctional Arm Repeat Domains in Plants. International Review of Cytology, 2006, 253, 1-26.	6.2	58
42	Altered Expression of PERK Receptor Kinases inArabidopsisLeads to Changes in Growth and Floral Organ Formation. Plant Signaling and Behavior, 2006, 1, 251-260.	2.4	29
43	A Comprehensive Expression Analysis of the Arabidopsis Proline-rich Extensin-like Receptor Kinase Gene Family using Bioinformatic and Experimental Approaches. Plant and Cell Physiology, 2004, 45, 1875-1881.	3.1	63
44	Antisense suppression of thioredoxinhmRNA in Brassica napus cv Plant Molecular Biology, 2004, 55, 619-630.	3.9	59
45	PLANT SCIENCES: Self-Rejectiona New Kinase Connection. Science, 2004, 303, 1474-1475.	12.6	40
46	A Large Complement of the Predicted Arabidopsis ARM Repeat Proteins Are Members of the U-Box E3 Ubiquitin Ligase Family. Plant Physiology, 2004, 134, 59-66.	4.8	192
47	Receptor kinase signalling in plants. Canadian Journal of Botany, 2004, 82, 1-15.	1.1	52
48	ARC1 Is an E3 Ubiquitin Ligase and Promotes the Ubiquitination of Proteins during the Rejection of Self-Incompatible Brassica Pollen. Plant Cell, 2003, 15, 885-898.	6.6	329
49	The proline-rich, extensin-like receptor kinase-1 (PERK1) gene is rapidly induced by wounding. Plant Molecular Biology, 2002, 50, 667-685.	3.9	107
50	Characterization of a novel Brassica napus kinase, BNK1. Plant Science, 2001, 160, 611-620.	3.6	5
51	The molecular biology of self-incompatibility systems in flowering plants. Plant Cell, Tissue and Organ Culture, 2001, 67, 93-114.	2.3	35
52	Further analysis of the interactions between the Brassica S receptor kinase and three interacting proteins (ARC1, THL1 and THL2) in the yeast two-hybrid system. Plant Molecular Biology, 2001, 45, 365-376.	3.9	81
53	Transformation of Arabidopsis with a Brassica SLG/SRK region and ARC1 gene is not sufficient to transfer the self-incompatibility phenotype. Molecular Genetics and Genomics, 2000, 263, 648-654.	2.4	24
54	The Search for Components of the Self-incompatibility Signalling Pathway(s) in Brassica napus. Annals of Botany, 2000, 85, 171-179.	2.9	10

DAPHNE R GORING

#	Article	IF	CITATIONS
55	Neither compatible nor selfâ€incompatible pollinations of Brassica napus involve reorganization of the papillar cytoskeleton. New Phytologist, 1999, 141, 199-207.	7.3	16
56	A Breakdown of Brassica Self-Incompatibility in ARC1 Antisense Transgenic Plants. Science, 1999, 286, 1729-1731.	12.6	230
57	The Self-Incompatibility Phenotype in Brassica Is Altered by the Transformation of a Mutant S Locus Receptor Kinase. Plant Cell, 1998, 10, 209-218.	6.6	60
58	The Self-Incompatibility Phenotype in Brassica Is Altered by the Transformation of a Mutant S Locus Receptor Kinase. Plant Cell, 1998, 10, 209.	6.6	4
59	Binding of an arm repeat protein to the kinase domain of the S-locus receptor kinase. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 382-387.	7.1	286
60	Interrelationships between Cytoplasmic Ca2+ Peaks, Pollen Hydration and Plasma Membrane Conductances during Compatible and Incompatible Pollinations of Brassica napus Papillae. Plant and Cell Physiology, 1997, 38, 985-999.	3.1	28
61	Loss of callose in the stigma papillae does not affect the Brassica self-incompatibility phenotype. Planta, 1997, 203, 327-331.	3.2	18
62	Molecular Characterization of the S Locus in Two Self-Incompatible Brassica napus Lines. Plant Cell, 1996, 8, 2369.	6.6	0
63	Two Members of the Thioredoxin-h Family Interacts with the Kinase Domain of a Brassica S Locus Receptor Kinase. Plant Cell, 1996, 8, 1641.	6.6	68
64	S-Locus Receptor Kinase Genes and Self-incompatibility in Brassica napus. Plant Gene Research, 1996, , 217-230.	0.4	7
65	Features of the extracellular domain of the S-locus receptor kinase from Brassica. Molecular Genetics and Genomics, 1994, 244, 630-637.	2.4	25
66	Developmental regulation and cell type-specific expression of the murine γF-crystallin gene is mediated through a lens-specific element containing the γF-1 binding site. Developmental Dynamics, 1993, 196, 143-152.	1.8	40
67	An S Receptor Kinase Gene in Self-Compatible Brassica napus Has a 1-bp Deletion. Plant Cell, 1993, 5, 531.	6.6	41
68	Temporal regulation of six crystallin transcripts during mouse lens development. Experimental Eye Research, 1992, 54, 785-795.	2.6	45
69	Use of the polymerase chain reaction to isolate an S-locus glycoprotein cDNA introgressed from Brassica campestris into B. napus ssp. oleifera. Molecular Genetics and Genomics, 1992, 234, 185-192.	2.4	51
70	Identification of an S-locus glycoprotein allele introgressed from B. napus ssp. rapifera to B. napus ssp. oleifera Plant Journal, 1992, 2, 983-989.	5.7	32
71	Transformation of a partial nopaline synthase gene into tobacco suppresses the expression of a resident wild-type gene Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 1770-1774.	7.1	78
72	In situ detection of beta-galactosidase in lenses of transgenic mice with a gamma-crystallin/lacZ gene. Science, 1987, 235, 456-458.	12.6	144

#	Article	IF	CITATIONS
73	Analysis of spontaneous mutations in a chromosomally located hsv-1 thymidine kinase (TK) gene in a human cell line. Somatic Cell and Molecular Genetics, 1987, 13, 47-56.	0.7	7
74	A cytotoxic effect associated with 9-(1,3-dihydroxy-2-propoxymethyl)-guanine is observed during the selection for drug resistant human cells containing a single herpesvirus thymidine kinase gene. Biochemical and Biophysical Research Communications, 1985, 133, 195-201.	2.1	6