
Saar Gill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1411641/publications.pdf Version: 2024-02-01

SAAD CILL

#	Article	IF	CITATIONS
1	Convergence of Acquired Mutations and Alternative Splicing of <i>CD19</i> Enables Resistance to CART-19 Immunotherapy. Cancer Discovery, 2015, 5, 1282-1295.	9.4	997
2	Human chimeric antigen receptor macrophages for cancer immunotherapy. Nature Biotechnology, 2020, 38, 947-953.	17.5	692
3	Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor–modified T cells. Blood, 2014, 123, 2343-2354.	1.4	396
4	Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood, 2016, 127, 1117-1127.	1.4	381
5	Macrophage-Based Approaches for Cancer Immunotherapy. Cancer Research, 2021, 81, 1201-1208.	0.9	327
6	Genetic Inactivation of CD33 in Hematopoietic Stem Cells to Enable CAR T Cell Immunotherapy for Acute Myeloid Leukemia. Cell, 2018, 173, 1439-1453.e19.	28.9	323
7	Going viral: chimeric antigen receptor Tâ€cell therapy for hematological malignancies. Immunological Reviews, 2015, 263, 68-89.	6.0	290
8	Impaired Death Receptor Signaling in Leukemia Causes Antigen-Independent Resistance by Inducing CAR T-cell Dysfunction. Cancer Discovery, 2020, 10, 552-567.	9.4	184
9	Efficacy and Safety of Hydroxychloroquine vs Placebo for Pre-exposure SARS-CoV-2 Prophylaxis Among Health Care Workers. JAMA Internal Medicine, 2021, 181, 195.	5.1	168
10	Optimizing Chimeric Antigen Receptor T-Cell Therapy for Adults With Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2020, 38, 415-422.	1.6	162
11	The Addition of the BTK Inhibitor Ibrutinib to Anti-CD19 Chimeric Antigen Receptor T Cells (CART19) Improves Responses against Mantle Cell Lymphoma. Clinical Cancer Research, 2016, 22, 2684-2696.	7.0	157
12	Overcoming the Immunosuppressive Tumor Microenvironment of Hodgkin Lymphoma Using Chimeric Antigen Receptor T Cells. Cancer Discovery, 2017, 7, 1154-1167.	9.4	149
13	Optimized depletion of chimeric antigen receptor T cells in murine xenograft models of human acute myeloid leukemia. Blood, 2017, 129, 2395-2407.	1.4	148
14	CAR T Cells for Acute Myeloid Leukemia: State of the Art and Future Directions. Frontiers in Oncology, 2020, 10, 697.	2.8	129
15	Long-Term Outcomes From a Randomized Dose Optimization Study of Chimeric Antigen Receptor Modified T Cells in Relapsed Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 2020, 38, 2862-2871.	1.6	102
16	Antigen-independent activation enhances the efficacy of 4-1BB-costimulated CD22 CAR T cells. Nature Medicine, 2021, 27, 842-850.	30.7	88
17	Chimeric Antigen Receptor T Cells and Hematopoietic Cell Transplantation: How Not to Put the CART Before the Horse. Biology of Blood and Marrow Transplantation, 2017, 23, 235-246.	2.0	76
18	Engineered CAR-Macrophages as Adoptive Immunotherapies for Solid Tumors. Frontiers in Immunology, 2021, 12, 783305.	4.8	73

SAAR GILL

#	Article	IF	CITATIONS
19	Chimeric antigen receptor T-cell therapy for acute myeloid leukemia: how close to reality?. Haematologica, 2019, 104, 1302-1308.	3.5	62
20	Novel Approaches to Acute Myeloid Leukemia Immunotherapy. Clinical Cancer Research, 2018, 24, 5502-5515.	7.0	56
21	Bispecific Antibodies in the Treatment of Hematologic Malignancies. Clinical Pharmacology and Therapeutics, 2019, 106, 781-791.	4.7	52
22	Will CAR T cell therapy have a role in AML? Promises and pitfalls. Seminars in Hematology, 2019, 56, 155-163.	3.4	45
23	Chimeric Antigen Receptor T-cell Therapy to Target Hematologic Malignancies. Cancer Research, 2014, 74, 6383-6389.	0.9	38
24	Anti-CD123 chimeric antigen receptor T-cells (CART): an evolving treatment strategy for hematological malignancies, and a potential ace-in-the-hole against antigen-negative relapse. Leukemia and Lymphoma, 2018, 59, 1539-1553.	1.3	31
25	CAR T-Cell Therapy in Hematologic Malignancies: Clinical Role, Toxicity, and Unanswered Questions. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2021, 41, e246-e265.	3.8	27
26	Advances in chimeric antigen receptor T cells. Current Opinion in Hematology, 2020, 27, 368-377.	2.5	24
27	The promise and perils of immunotherapy. Blood Advances, 2021, 5, 3709-3725.	5.2	23
28	Chimeric antigen receptor T cell therapy in AML: How close are we?. Best Practice and Research in Clinical Haematology, 2016, 29, 329-333.	1.7	22
29	Reduced-Intensity Hematopoietic Stem Cell Transplants for Malignancies: Harnessing the Graft-Versus-Tumor Effect. Annual Review of Medicine, 2013, 64, 101-117.	12.2	20
30	CAR-modified anti-CD19 T cells for the treatment of B-cell malignancies: rules of the road. Expert Opinion on Biological Therapy, 2014, 14, 37-49.	3.1	20
31	T cell-based gene therapy of cancer. Translational Research, 2013, 161, 365-379.	5.0	18
32	Prediction and validation of hematopoietic stem and progenitor cell off-target editing in transplanted rhesus macaques. Molecular Therapy, 2022, 30, 209-222.	8.2	17
33	Comprehensive Serum Proteome Profiling of Cytokine Release Syndrome and Immune Effector Cell–Associated Neurotoxicity Syndrome Patients with B-Cell ALL Receiving CAR T19. Clinical Cancer Research, 2022, 28, 3804-3813.	7.0	17
34	CAR-T cell persistence in the treatment of leukemia and lymphoma. Leukemia and Lymphoma, 2021, 62, 2587-2599.	1.3	13
35	Open-Label Phase II Prospective, Randomized, Controlled Study of Romyelocel-L Myeloid Progenitor Cells to Reduce Infection During Induction Chemotherapy for Acute Myeloid Leukemia. Journal of Clinical Oncology, 2021, 39, JCO.20.01739.	1.6	10
36	Improved surfaceome coverage with a labelâ€free nonaffinityâ€purified workflow. Proteomics, 2017, 17, 1600344.	2.2	9

SAAR GILL

#	Article	IF	CITATIONS
37	Toward dual hematopoietic stem-cell transplantation and solid-organ transplantation for sickle-cell disease. Blood Advances, 2018, 2, 575-585.	5.2	7
38	Real World Survival Outcomes of CPX-351 Versus Venetoclax and Azacitadine for Initial Therapy in Adult Acute Myeloid Leukemia. Blood, 2021, 138, 795-795.	1.4	7
39	Time to unrelated donor leukocyte infusion is longer, but incidence of GVHD and overall survival are similar for recipients of unrelated DLI compared to matched sibling DLI. American Journal of Hematology, 2016, 91, 426-429.	4.1	3
40	The Yin and Yang of Alloreactivity: Chronic Graft-versus-Host Disease and Leukemia Relapse. Clinical Cancer Research, 2015, 21, 1981-1983.	7.0	2
41	Planes, Trains, and Automobiles: Perspectives on CAR T Cells and Other Cellular Therapies for Hematologic Malignancies. Current Hematologic Malignancy Reports, 2016, 11, 318-325.	2.3	2
42	Repurposing Bi-Specific Chimeric Antigen Receptor (CAR) Approach to Enhance CAR T Cell Activity Against Low Antigen Density Tumors. Blood, 2020, 136, 30-30.	1.4	2
43	Antigen Glycosylation Is a Central Regulator of CAR T Cell Efficacy. Blood, 2021, 138, 1721-1721.	1.4	2
44	DARTs point the way forward in AML. Blood, 2021, 137, 720-721.	1.4	1
45	CAR T cells engage in anticancer martial arts. Science Translational Medicine, 2017, 9, .	12.4	1
46	Longitudinal Large-Scale Semiquantitative Proteomic Data Stability Across Multiple Instrument Platforms. Journal of Proteome Research, 2021, 20, 5203-5211.	3.7	1
47	Anti-FLT3 CAR T Cells in Acute Myeloid Leukemia. Blood, 2021, 138, 1703-1703.	1.4	1
48	Long-term outcomes in patients with AML achieving first complete remission: confronting the double-hit of survivorship. Leukemia and Lymphoma, 2020, 61, 3035-3037.	1.3	0
49	Poster child: Ready for a close-up. Science Translational Medicine, 2016, 8, .	12.4	0
50	Teaching an old antibody new tricks. Science Translational Medicine, 2016, 8, .	12.4	0
51	Losing inhibitions: Expect the unexpected. Science Translational Medicine, 2016, 8, .	12.4	0
52	One step closer to viral eradication in HIV. Science Translational Medicine, 2016, 8, .	12.4	0
53	Everything you splice can and will be used against you. Science Translational Medicine, 2016, 8, .	12.4	0
54	An apple a day may not keep the doctor away, if you have AML. Science Translational Medicine, 2016, 8, .	12.4	0

#	Article	IF	CITATIONS
55	Monkey business: Repurposing a protein from the simian immunodeficiency virus to enhance cytotoxic chemotherapy. Science Translational Medicine, 2017, 9, .	12.4	Ο