Michael P Harms

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1410823/publications.pdf

Version: 2024-02-01

52 papers

9,801 citations

38 h-index 53 g-index

53 all docs 53 docs citations

53 times ranked

10579 citing authors

#	Article	IF	Citations
1	Resting-state fMRI in the Human Connectome Project. NeuroImage, 2013, 80, 144-168.	4.2	1,367
2	The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Developmental Cognitive Neuroscience, 2018, 32, 43-54.	4.0	1,282
3	Function in the human connectome: Task-fMRI and individual differences in behavior. NeuroImage, 2013, 80, 169-189.	4.2	1,259
4	The Human Connectome Project's neuroimaging approach. Nature Neuroscience, 2016, 19, 1175-1187.	14.8	825
5	Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. Neurolmage, 2019, 202, 116091.	4.2	539
6	MSM: A new flexible framework for Multimodal Surface Matching. NeuroImage, 2014, 100, 414-426.	4.2	532
7	Human Connectome Project informatics: Quality control, database services, and data visualization. Neurolmage, 2013, 80, 202-219.	4.2	356
8	Extending the Human Connectome Project across ages: Imaging protocols for the Lifespan Development and Aging projects. Neurolmage, 2018, 183, 972-984.	4.2	290
9	Evaluation of Denoising Strategies to Address Motion-Correlated Artifacts in Resting-State Functional Magnetic Resonance Imaging Data from the Human Connectome Project. Brain Connectivity, 2016, 6, 669-680.	1.7	226
10	Using temporal ICA to selectively remove global noise while preserving global signal in functional MRI data. Neurolmage, 2018, 181, 692-717.	4.2	223
11	The Lifespan Human Connectome Project in Aging: An overview. Neurolmage, 2019, 185, 335-348.	4.2	186
12	The Lifespan Human Connectome Project in Development: A large-scale study of brain connectivity development in 5–21 year olds. NeuroImage, 2018, 183, 456-468.	4.2	184
13	Fronto-parietal and cingulo-opercular network integrity and cognition in health and schizophrenia. Neuropsychologia, 2015, 73, 82-93.	1.6	160
14	Stress-System Genes and Life Stress Predict Cortisol Levels and Amygdala and Hippocampal Volumes in Children. Neuropsychopharmacology, 2014, 39, 1245-1253.	5 . 4	157
15	Anterior thalamic radiation integrity in schizophrenia: A diffusion-tensor imaging study. Psychiatry Research - Neuroimaging, 2010, 183, 144-150.	1.8	146
16	Preschool is a sensitive period for the influence of maternal support on the trajectory of hippocampal development. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5742-5747.	7.1	121
17	Temperament and character as schizophrenia-related endophenotypes in non-psychotic siblings. Schizophrenia Research, 2008, 104, 198-205.	2.0	113
18	Amygdala functional connectivity, HPA axis genetic variation, and life stress in children and relations to anxiety and emotion regulation Journal of Abnormal Psychology, 2015, 124, 817-833.	1.9	110

#	Article	IF	CITATIONS
19	Effect of Hippocampal and Amygdala Connectivity on the Relationship Between Preschool Poverty and School-Age Depression. American Journal of Psychiatry, 2016, 173, 625-634.	7.2	107
20	Functional and Neuroanatomic Specificity of Episodic Memory Dysfunction in Schizophrenia. JAMA Psychiatry, 2015, 72, 909.	11.0	104
21	Thalamic Shape Abnormalities in Individuals with Schizophrenia and Their Nonpsychotic Siblings. Journal of Neuroscience, 2007, 27, 13835-13842.	3.6	98
22	Progressive Deformation of Deep Brain Nuclei and Hippocampal-Amygdala Formation in Schizophrenia. Biological Psychiatry, 2008, 64, 1060-1068.	1.3	86
23	Early Childhood Depression and Alterations in the Trajectory of Gray Matter Maturation in Middle Childhood and Early Adolescence. JAMA Psychiatry, 2016, 73, 31.	11.0	80
24	ConnectomeDBâ€"Sharing human brain connectivity data. NeuroImage, 2016, 124, 1102-1107.	4.2	80
25	Early childhood depression, emotion regulation, episodic memory, and hippocampal development Journal of Abnormal Psychology, 2019, 128, 81-95.	1.9	78
26	Structural abnormalities in gyri of the prefrontal cortex in individuals with schizophrenia and their unaffected siblings. British Journal of Psychiatry, 2010, 196, 150-157.	2.8	72
27	Basal Ganglia Shape Abnormalities in the Unaffected Siblings of Schizophrenia Patients. Biological Psychiatry, 2008, 64, 111-120.	1.3	66
28	Effects of Davunetide on N-acetylaspartate and Choline in Dorsolateral Prefrontal Cortex in Patients with Schizophrenia. Neuropsychopharmacology, 2013, 38, 1245-1252.	5 . 4	60
29	Short-Term Sound Temporal Envelope Characteristics Determine Multisecond Time Patterns of Activity in Human Auditory Cortex as Shown by fMRI. Journal of Neurophysiology, 2005, 93, 210-222.	1.8	57
30	Cingulate gyrus neuroanatomy in schizophrenia subjects and their non-psychotic siblings. Schizophrenia Research, 2008, 104, 61-70.	2.0	54
31	Detection and quantification of a wide range of fMRI temporal responses using a physiologically-motivated basis set. Human Brain Mapping, 2003, 20, 168-183.	3.6	52
32	Medial temporal lobe structure and cognition in individuals with schizophrenia and in their non-psychotic siblings. Schizophrenia Research, 2012, 138, 128-135.	2.0	52
33	Neuroanatomical asymmetry patterns in individuals with schizophrenia and their non-psychotic siblings. Neurolmage, 2009, 47, 1221-1229.	4.2	50
34	Baseline brain function in the preadolescents of the ABCD Study. Nature Neuroscience, 2021, 24, 1176-1186.	14.8	48
35	Decomposition of brain diffusion imaging data uncovers latent schizophrenias with distinct patterns of white matter anisotropy. Neurolmage, 2015, 120, 43-54.	4.2	44
36	Structure–function relationship of working memory activity with hippocampal and prefrontal cortex volumes. Brain Structure and Function, 2013, 218, 173-186.	2.3	43

#	Article	IF	Citations
37	Hippocampal Shape and Volume Changes with Antipsychotics in Early Stage Psychotic Illness. Frontiers in Psychiatry, 2012, 3, 96.	2.6	42
38	HPA axis genetic variation, pubertal status, and sex interact to predict amygdala and hippocampus responses to negative emotional faces in school-age children. Neurolmage, 2015, 109, 1-11.	4.2	42
39	Classification of temporal ICA components for separating global noise from fMRI data: Reply to Power. Neurolmage, 2019, 197, 435-438.	4.2	40
40	Altered Gray Matter Volume and School Age Anxiety in Children Born Late Preterm. Journal of Pediatrics, 2014, 165, 928-935.	1.8	39
41	Cortical contributions to impaired contour integration in schizophrenia. Neuropsychologia, 2015, 75, 469-480.	1.6	39
42	Evidence for Accelerated Decline of Functional Brain Network Efficiency in Schizophrenia. Schizophrenia Bulletin, 2016, 42, 753-761.	4.3	39
43	Anterior Insula Volume and Guilt. JAMA Psychiatry, 2015, 72, 40.	11.0	38
44	Perceived stress is associated with increased rostral middle frontal gyrus cortical thickness: a familyâ€based and discordantâ€sibling investigation. Genes, Brain and Behavior, 2017, 16, 781-789.	2.2	38
45	Cingulo-opercular Network Efficiency Mediates the Association Between Psychotic-like Experiences and Cognitive Ability in the General Population. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2016, 1, 498-506.	1.5	36
46	Distinct abnormalities of the primate prefrontal cortex caused by ionizing radiation in early or midgestation. Journal of Comparative Neurology, 2013, 521, 1040-1053.	1.6	32
47	Test-retest reliability of fMRI-measured brain activity during decision making under risk. NeuroImage, 2020, 214, 116759.	4.2	24
48	Effects of Age, Sex, and Independent Life Events on Amygdala and Nucleus Accumbens Volumes in Child Bipolar I Disorder. Biological Psychiatry, 2009, 65, 432-437.	1.3	23
49	Donepezil Treatment and Changes in Hippocampal Structure in Very Mild Alzheimer Disease. Archives of Neurology, 2010, 67, 99-106.	4.5	23
50	Sexual dimorphism of the cerebellar vermis in schizophrenia. Schizophrenia Research, 2016, 176, 164-170.	2.0	18
51	Fractional anisotropy in individuals with schizophrenia and their nonpsychotic siblings. Psychiatry Research - Neuroimaging, 2015, 231, 87-91.	1.8	10
52	Task-related fMRI responses to a nicotinic acetylcholine receptor partial agonist in schizophrenia: A randomized trial. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 71, 66-75.	4.8	8