
David R Weaver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1409258/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cell-Type-Specific Circadian Bioluminescence Rhythms in <i>Dbp</i> Reporter Mice. Journal of Biological Rhythms, 2022, 37, 53-77.	2.6	7
2	Methods for Detecting PER2:LUCIFERASE Bioluminescence Rhythms in Freely Moving Mice. Journal of Biological Rhythms, 2022, 37, 78-93.	2.6	7
3	Deconstructing circadian disruption: Assessing the contribution of reduced peripheral oscillator amplitude on obesity and glucose intolerance in mice. Journal of Pineal Research, 2020, 69, e12654.	7.4	11
4	Periodic Parasites and Daily Host Rhythms. Cell Host and Microbe, 2020, 27, 176-187.	11.0	31
5	Desynchrony between brain and peripheral clocks caused by CK1Î/ε disruption in GABA neurons does not lead to adverse metabolic outcomes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2437-E2446.	7.1	34
6	Functionally Complete Excision of Conditional Alleles in the Mouse Suprachiasmatic Nucleus by Vgat-ires-Cre. Journal of Biological Rhythms, 2018, 33, 179-191.	2.6	20
7	Clocks and meals keep mice from being cool. Journal of Experimental Biology, 2018, 221, .	1.7	19
8	The Circadian Clock Gene BMAL1 Coordinates IntestinalÂRegeneration. Cellular and Molecular Gastroenterology and Hepatology, 2017, 4, 95-114.	4.5	69
9	Single-Cell Transcriptional Analysis Reveals Novel Neuronal Phenotypes and Interaction Networks Involved in the Central Circadian Clock. Frontiers in Neuroscience, 2016, 10, 481.	2.8	64
10	The Hepatic Circadian Clock Modulates Xenobiotic Metabolism in Mice. Journal of Biological Rhythms, 2014, 29, 277-287.	2.6	42
11	Circadian Timekeeping. , 2013, , 819-845.		5
12	Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration. Journal of Clinical Investigation, 2013, 123, 5389-5400.	8.2	393
13	Disruption of gene expression rhythms in mice lacking secretory vesicle proteins IA-2 and IA-2β. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E762-E776.	3.5	8
14	Antibodies for Assessing Circadian Clock Proteins in the Rodent Suprachiasmatic Nucleus. PLoS ONE, 2012, 7, e35938.	2.5	25
15	Integrative Gene Regulatory Network Analysis Reveals Light-Induced Regional Gene Expression Phase Shift Programs in the Mouse Suprachiasmatic Nucleus. PLoS ONE, 2012, 7, e37833.	2.5	15
16	The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16451-16456.	7.1	158
17	Distinct patterns of Period gene expression in the suprachiasmatic nucleus underlie circadian clock photoentrainment by advances or delays. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17219-17224.	7.1	50
18	Photic Resetting and Entrainment in CLOCK-Deficient Mice. Journal of Biological Rhythms, 2011, 26, 390-401	2.6	24

#	Article	IF	CITATIONS
19	Disrupting the circadian clock: Gene-specific effects on aging, cancer, and other phenotypes. Aging, 2011, 3, 479-493.	3.1	198
20	ALTERED BODY MASS REGULATION IN MALEmPeriodMUTANT MICE ON HIGH-FAT DIET. Chronobiology International, 2010, 27, 1317-1328.	2.0	84
21	Casein Kinase 1 Delta (CK1Î) Regulates Period Length of the Mouse Suprachiasmatic Circadian Clock In Vitro. PLoS ONE, 2010, 5, e10303.	2.5	47
22	Deletion of the secretory vesicle proteins IAâ€⊋ and IAâ€2β disrupts circadian rhythms of cardiovascular and physical activity. FASEB Journal, 2009, 23, 3226-3232.	0.5	25
23	Casein Kinase 1 Delta Regulates the Pace of the Mammalian Circadian Clock. Molecular and Cellular Biology, 2009, 29, 3853-3866.	2.3	201
24	Vascular Rhythms and Adaptation. Circulation, 2009, 119, 1463-1466.	1.6	12
25	The circadian clock protein Period 1 regulates expression of the renal epithelial sodium channel in mice. Journal of Clinical Investigation, 2009, 119, 2423-2434.	8.2	189
26	Rhythmic expression of clock genes in the ependymal cell layer of the third ventricle of rodents is independent of melatonin signaling. European Journal of Neuroscience, 2008, 28, 2443-2450.	2.6	12
27	Loss of responsiveness to melatonin in the aging mouse suprachiasmatic nucleus. Neurobiology of Aging, 2008, 29, 464-470.	3.1	44
28	Transient, Light-Induced Rhythmicity in mPER-Deficient Mice. Journal of Biological Rhythms, 2007, 22, 85-88.	2.6	20
29	PER1-Like Immunoreactivity in Oxytocin Cells of the Hamster Hypothalamo-Neurohypophyseal System. Journal of Biological Rhythms, 2007, 22, 81-84.	2.6	4
30	CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nature Neuroscience, 2007, 10, 543-545.	14.8	428
31	Peripheral circadian oscillators require CLOCK. Current Biology, 2007, 17, R538-R539.	3.9	138
32	A Clock Shock: Mouse CLOCK Is Not Required for Circadian Oscillator Function. Neuron, 2006, 50, 465-477.	8.1	386
33	The Polycomb Group Protein EZH2 Is Required for Mammalian Circadian Clock Function. Journal of Biological Chemistry, 2006, 281, 21209-21215.	3.4	152
34	Peripheral Gene Expression Rhythms in a Diurnal Rodent. Journal of Biological Rhythms, 2006, 21, 77-79.	2.6	30
35	Melatonin Plays a Crucial Role in the Regulation of Rhythmic Clock Gene Expression in the Mouse Pars Tuberalis. Annals of the New York Academy of Sciences, 2005, 1040, 508-511.	3.8	118
36	Melatonin inhibits hippocampal longâ€ŧerm potentiation. European Journal of Neuroscience, 2005, 22, 2231-2237.	2.6	128

#	Article	IF	CITATIONS
37	Rhythms in clock proteins in the mouse pars tuberalis depend on MT1 melatonin receptor signalling. European Journal of Neuroscience, 2005, 22, 2845-2854.	2.6	80
38	Molecular Biology of Circadian Rhythms. Genes, Brain and Behavior, 2005, 4, 126-127.	2.2	0
39	Molecular Biology of Circadian Rhythms. Genes, Brain and Behavior, 2005, 4, 126-127.	2.2	3
40	Analysis of the Prokineticin 2 System in a Diurnal Rodent, the Unstriped Nile Grass Rat (Arvicanthis) Tj ETQq0 0 () rgBT /Ov 2.6	erlock 10 Tf 5
41	Direct Association between Mouse PERIOD and CKIε Is Critical for a Functioning Circadian Clock. Molecular and Cellular Biology, 2004, 24, 584-594.	2.3	143
42	Sleep rhythmicity and homeostasis in mice with targeted disruption of <i>mPeriod</i> genes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 287, R47-R57.	1.8	129
43	Light does not degrade the constitutively expressed BMAL1 protein in the mouse suprachiasmatic nucleus. European Journal of Neuroscience, 2003, 18, 125-133.	2.6	44
44	Light-Induced Phase Shifts in Mice Lacking mPER1 or mPER2. Journal of Biological Rhythms, 2003, 18, 123-133.	2.6	39
45	Targeted Disruption of the Mouse Mel _{1b} Melatonin Receptor. Molecular and Cellular Biology, 2003, 23, 1054-1060.	2.3	232
46	Development and Validation of Computational Models for Mammalian Circadian Oscillators. OMICS A Journal of Integrative Biology, 2003, 7, 387-400.	2.0	14
47	Mammalian melatonin receptors: molecular biology and signal transduction. Cell and Tissue Research, 2002, 309, 151-162.	2.9	411
48	Coordination of circadian timing in mammals. Nature, 2002, 418, 935-941.	27.8	3,763
49	Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature, 2002, 417, 405-410.	27.8	643
50	Rhythmic gene expression in pituitary depends on heterologous sensitization by the neurohormone melatonin. Nature Neuroscience, 2002, 5, 234-238.	14.8	235
51	Molecular Analysis of Mammalian Circadian Rhythms. Annual Review of Physiology, 2001, 63, 647-676.	13.1	1,306
52	Differential Functions of mPer1, mPer2, and mPer3 in the SCN Circadian Clock. Neuron, 2001, 30, 525-536.	8.1	802
53	Distinct Pharmacological Mechanisms Leading to c-fos Gene Expression in the Fetal Suprachiasmatic Nucleus. Journal of Biological Rhythms, 2001, 16, 531-540.	2.6	11
54	Postmortem Stability of Melatonin Receptor Binding and Clock-Relevant mRNAs in Mouse Suprachiasmatic Nucleus. Journal of Biological Rhythms, 2001, 16, 216-223.	2.6	7

#	Article	IF	CITATIONS
55	Melatonin limits transcriptional impact of phosphoCREB in the mouse SCN via the Mel1a receptor. NeuroReport, 2000, 11, 1803-1807.	1.2	61
56	A clockwork green. NeuroReport, 2000, 11, F9-F10.	1.2	1
57	A time-less function for mouse Timeless. Nature Neuroscience, 2000, 3, 755-756.	14.8	159
58	Comparing Clockworks: Mouse versus Fly. Journal of Biological Rhythms, 2000, 15, 357-364.	2.6	82
59	Targeted Disruption of the <i>mPer3</i> Gene: Subtle Effects on Circadian Clock Function. Molecular and Cellular Biology, 2000, 20, 6269-6275.	2.3	289
60	Analysis of Clock Proteins in Mouse SCN Demonstrates Phylogenetic Divergence of the Circadian Clockwork and Resetting Mechanisms. Neuron, 2000, 25, 437-447.	8.1	318
61	Interacting Molecular Loops in the Mammalian Circadian Clock. Science, 2000, 288, 1013-1019.	12.6	1,223
62	Targeted Disruption of the mPer3 Gene: Subtle Effects on Circadian Clock Function. Molecular and Cellular Biology, 2000, 20, 6269-6275.	2.3	32
63	Differential Regulation of mPER1 and mTIM Proteins in the Mouse Suprachiasmatic Nuclei: New Insights into a Core Clock Mechanism. Journal of Neuroscience, 1999, 19, RC11-RC11.	3.6	145
64	A Molecular Mechanism Regulating Rhythmic Output from the Suprachiasmatic Circadian Clock. Cell, 1999, 96, 57-68.	28.9	834
65	mCRY1 and mCRY2 Are Essential Components of the Negative Limb of the Circadian Clock Feedback Loop. Cell, 1999, 98, 193-205.	28.9	1,445
66	Photic induction of Period gene expression is reduced in Clock mutant mice. NeuroReport, 1999, 10, 613-618.	1.2	56
67	The Roles of Melatonin in Development. , 1999, 460, 199-214.		9
68	Three period Homologs in Mammals: Differential Light Responses in the Suprachiasmatic Circadian Clock and Oscillating Transcripts Outside of Brain. Neuron, 1998, 20, 1103-1110.	8.1	807
69	Molecular Analysis of Mammalian Timeless. Neuron, 1998, 21, 1115-1122.	8.1	169
70	The Suprachiasmatic Nucleus: A 25-Year Retrospective. Journal of Biological Rhythms, 1998, 13, 100-112.	2.6	432
71	Reproductive Safety of Melatonin: A "Wonder Drug" to Wonder About. Journal of Biological Rhythms, 1997, 12, 682-689.	2.6	42
72	Molecular Dissection of Two Distinct Actions of Melatonin on the Suprachiasmatic Circadian Clock. Neuron, 1997, 19, 91-102.	8.1	660

#	Article	IF	CITATIONS
73	Two period Homologs: Circadian Expression and Photic Regulation in the Suprachiasmatic Nuclei. Neuron, 1997, 19, 1261-1269.	8.1	715
74	Forward Genetic Approach Strikes Gold: Cloning of a Mammalian Clock Gene. Cell, 1997, 89, 487-490.	28.9	50
75	Cellular Construction of a Circadian Clock: Period Determination in the Suprachiasmatic Nuclei. Cell, 1997, 91, 855-860.	28.9	456
76	Haloperidol regulates neurotensin gene expression in striatum of c-fos-deficient mice. Molecular Brain Research, 1997, 47, 275-285.	2.3	6
77	[125I]4-Aminobenzyl-5′-N-methylcarboxamidoadenosine ([125I]AB-MECA) labels multiple adenosine receptor subtypes in rat brain. Brain Research, 1997, 745, 10-20.	2.2	38
78	Widespread expression of functional D1-dopamine receptors in fetal rat brain. Developmental Brain Research, 1997, 102, 105-115.	1.7	34
79	Melatonin receptors step into the light: cloning and classification of subtypes. Trends in Pharmacological Sciences, 1996, 17, 100-102.	8.7	378
80	Cloning of a melatonin-related receptor from human pituitary. FEBS Letters, 1996, 386, 219-224.	2.8	140
81	The Mel1a melatonin receptor gene is expressed in human suprachiasmatic nuclei. NeuroReport, 1996, 8, 109-112.	1.2	119
82	A1-adenosine receptor gene expression in fetal rat brain. Developmental Brain Research, 1996, 94, 205-223.	1.7	54
83	Melatonin receptors are for the birds: Molecular analysis of two receptor subtypes differentially expressed in chick brain. Neuron, 1995, 15, 1003-1015.	8.1	332
84	Definition of the developmental transition from dopaminergic to photic regulation of c-fos gene expression in the rat suprachiasmatic nucleus. Molecular Brain Research, 1995, 33, 136-148.	2.3	84
85	Melatonin madness. Cell, 1995, 83, 1059-1062.	28.9	186
86	Localization of parathyroid hormone-related peptide (PTHrP) and PTH/PTHrP receptor mRNAs in rat brain. Molecular Brain Research, 1995, 28, 296-310.	2.3	82
87	C-fos and jun-B mRNAs are transiently expressed in fetal rodent suprachiasmatic nucleus following dopaminergic stimulation. Developmental Brain Research, 1995, 85, 293-297.	1.7	36
88	Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron, 1994, 13, 1177-1185.	8.1	1,013
89	Serotonin receptor gene expression in the rat suprachiasmatic nuclei. Brain Research, 1993, 608, 159-165.	2.2	77
90	A2a adenosine receptor gene expression in developing rat brain. Molecular Brain Research, 1993, 20, 313-327.	2.3	133

#	Article	IF	CITATIONS
91	Maternal Entrainment of a Fetal Biological Clock. , 1993, , 93-104.		0
92	Molecular cloning of the rat A2 adenosine receptor: selective co-expression with D2 dopamine receptors in rat striatum. Molecular Brain Research, 1992, 14, 186-195.	2.3	614
93	Molecular cloning of a G protein-coupled receptor that is highly expressed in lymphocytes and proliferative areas of developing brain. Molecular and Cellular Neurosciences, 1992, 3, 206-214.	2.2	8
94	Circadian and developmental regulation of Oct-2 gene expression in the suprachiasmatic nuclei. Brain Research, 1992, 598, 332-336.	2.2	11
95	Melatonin receptors and signal transduction during development in Siberian hamsters (Phodopus) Tj ETQq1 1 0.7	′84314 rg 1.7	BT_/Overlock
96	Molecular Cloning and Characterization of a Rat A ₁ -Adenosine Receptor that is Widely Expressed in Brain and Spinal Cord. Molecular Endocrinology, 1991, 5, 1037-1048.	3.7	325
97	High-Affinity Melatonin Receptors in Mammals: Localization, G-Protein Coupling and Signal Transduction. , 1991, , 85-95.		2
98	The Distribution of Melatonin Binding Sites in Neuroendocrine Tissues of the Ewe1. Biology of Reproduction, 1990, 43, 986-993.	2.7	104
99	MELATONIN RECEPTORS ARE PRESENT IN THE FERRET PARS TUBERALIS AND PARS DISTALIS, BUT NOT IN BRAIN. Endocrinology, 1990, 127, 2607-2609.	2.8	101
100	Melatonin receptors and signal transduction in melatonin-sensitive and melatonin-insensitive populations of white-footed mice (Peromyscus leucopus). Brain Research, 1990, 506, 353-357.	2.2	73
101	Melatonin Signal Transduction in Hamster Brain: Inhibition of Adenylyl Cyclase by a Pertussis Toxin- Sensitive G Protein*. Endocrinology, 1989, 125, 2670-2676.	2.8	201
102	Melatonin Receptors in Chick Brain: Characterization and Localization*. Endocrinology, 1989, 125, 363-368.	2.8	143
103	Direct in utero perception of light by the mammalian fetus. Developmental Brain Research, 1989, 47, 151-155.	1.7	34
104	Periodic feeding of SCN-lesioned pregnant rats entrains the fetal biological clock. Developmental Brain Research, 1989, 46, 291-295.	1.7	71
105	lodinated melatonin mimics melatonin action and reveals discrete binding sites in fetal brain. FEBS Letters, 1988, 228, 123-127.	2.8	130
106	The Influence of Light on the Mammalian Fetus. Proceedings in Life Sciences, 1988, , 149-177.	0.5	3
107	The circadian-gated timing of birth in rats: disruption by maternal SCN lesions or by removal of the fetal brain. Brain Research, 1987, 403, 398-402.	2.2	60
108	Nicotinic cholinergic influences on sexual receptivity in female rats. Pharmacology Biochemistry and Behavior, 1987, 26, 393-400.	2.9	10

#	Article	IF	CITATIONS
109	PENETRATION OF LIGHT INTO THE UTERUS OF PREGNANT MAMMALS. Photochemistry and Photobiology, 1987, 45, 637-641.	2.5	58
110	MATKRNAL MELATONIN COMMUNICATES DAYLENGTH TO THE FETUS IN DJUNGARIAN HAMSTERS. Endocrinology, 1986, 119, 2861-2863.	2.8	109
111	Light does not degrade BMAL1 protein in the mouse SCN. , 0, 2003, .		0