Rosa Rugani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/140895/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Number-space mapping in the newborn chick resembles humans' mental number line. Science, 2015, 347, 534-536.	12.6	289
2	Arithmetic in newborn chicks. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2451-2460.	2.6	169
3	Numerical discrimination by frogs (Bombina orientalis). Animal Cognition, 2015, 18, 219-229.	1.8	132
4	Discrimination of small numerosities in young chicks Journal of Experimental Psychology, 2008, 34, 388-399.	1.7	127
5	Is it only humans that count from left to right?. Biology Letters, 2010, 6, 290-292.	2.3	126
6	Rudimental numerical competence in 5-day-old domestic chicks (Gallus gallus): Identification of ordinal position Journal of Experimental Psychology, 2007, 33, 21-31.	1.7	84
7	One, two, three, four, or is there something more? Numerical discrimination in day-old domestic chicks. Animal Cognition, 2013, 16, 557-564.	1.8	77
8	Lateralization of social cognition in the domestic chicken (<i>Gallus gallus</i>). Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 965-981.	4.0	72
9	Imprinted numbers: newborn chicks' sensitivity to number vs. continuous extent of objects they have been reared with. Developmental Science, 2010, 13, 790-797.	2.4	69
10	A mental number line in human newborns. Developmental Science, 2019, 22, e12801.	2.4	67
11	Perception of the Ebbinghaus illusion in four-day-old domestic chicks (Gallus gallus). Animal Cognition, 2013, 16, 895-906.	1.8	59
12	Asymmetrical number-space mapping in the avian brain. Neurobiology of Learning and Memory, 2011, 95, 231-238.	1.9	55
13	Number-space associations without language: Evidence from preverbal human infants and non-human animal species. Psychonomic Bulletin and Review, 2017, 24, 352-369.	2.8	54
14	Delayed search for social and nonsocial goals by young domestic chicks, Gallus gallus domesticus. Animal Behaviour, 2005, 70, 855-864.	1.9	53
15	Summation of Large Numerousness by Newborn Chicks. Frontiers in Psychology, 2011, 2, 179.	2.1	53
16	Working memory in the chick: parallel and lateralized mechanisms for encoding of object- and position-specific information. Behavioural Brain Research, 2005, 157, 1-9.	2.2	52
17	Empty sets as part of the numerical continuum: Conceptual precursors to the zero concept in rhesus monkeys Journal of Experimental Psychology: General, 2009, 138, 258-269.	2.1	51
18	Numerical Abstraction in Young Domestic Chicks (Gallus gallus). PLoS ONE, 2013, 8, e65262.	2.5	50

Rosa Rugani

#	Article	IF	CITATIONS
19	From small to large: Numerical discrimination by young domestic chicks (Gallus gallus) Journal of Comparative Psychology (Washington, D C: 1983), 2014, 128, 163-171.	0.5	50
20	Rudiments of mind: Insights through the chick model on number and space cognition in animals Comparative Cognition and Behavior Reviews, 0, 5, 78-99.	2.0	44
21	Animal cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 2010, 1, 882-893.	2.8	40
22	Object individuation in 3-day-old chicks: use of property and spatiotemporal information. Developmental Science, 2011, 14, 1235-1244.	2.4	33
23	Brain asymmetry modulates perception of biological motion in newborn chicks (Gallus gallus). Behavioural Brain Research, 2015, 290, 1-7.	2.2	31
24	Use of numerical and spatial information in ordinal counting by zebrafish. Scientific Reports, 2019, 9, 18323.	3.3	25
25	Spontaneous discrimination of possible and impossible objects by newly hatched chicks. Biology Letters, 2011, 7, 654-657.	2.3	24
26	Lateralized mechanisms for encoding of object. Behavioral evidence from an animal model: the domestic chick (Gallus gallus). Frontiers in Psychology, 2014, 5, 150.	2.1	24
27	Ratio abstraction over discrete magnitudes by newly hatched domestic chicks (Gallus gallus). Scientific Reports, 2016, 6, 30114.	3.3	23
28	Mapping number to space in the two hemispheres of the avian brain. Neurobiology of Learning and Memory, 2016, 133, 13-18.	1.9	23
29	Towards numerical cognition's origin: insights from day-old domestic chicks. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160509.	4.0	23
30	Numerical magnitude, rather than individual bias, explains spatial numerical association in newborn chicks. ELife, 2020, 9, .	6.0	20
31	The use of proportion by young domestic chicks (Gallus gallus). Animal Cognition, 2015, 18, 605-616.	1.8	17
32	At the root of the left–right asymmetries in spatial–numerical processing: From domestic chicks to human subjects. Journal of Cognitive Psychology, 2015, 27, 388-399.	0.9	17
33	The effect of clustering on perceived quantity in humans (Homo sapiens) and in chicks (Gallus gallus) Journal of Comparative Psychology (Washington, D C: 1983), 2018, 132, 280-293.	0.5	17
34	Response to Comments on "Number-space mapping in the newborn chick resembles humans' mental number line― Science, 2015, 348, 1438-1438.	12.6	15
35	Use of kind information for object individuation in young domestic chicks. Animal Cognition, 2014, 17, 925-935.	1.8	14
36	Act on Numbers: Numerical Magnitude Influences Selection and Kinematics of Finger Movement. Frontiers in Psychology, 2017, 8, 1481.	2.1	14

Rosa Rugani

#	Article	IF	CITATIONS
37	A strategy to improve arithmetical performance in four day-old domestic chicks (Gallus gallus). Scientific Reports, 2017, 7, 13900.	3.3	13
38	Do nonâ€verbal number systems shape grammar? Numerical cognition and Number morphology compared. Mind and Language, 2019, 34, 37-58.	2.3	13
39	Response: "Newborn chicks need no number tricks. Commentary: Number-space mapping in the newborn chick resembles humans' mental number line― Frontiers in Human Neuroscience, 2016, 10, 31.	2.0	10
40	Numbers in Action. Frontiers in Human Neuroscience, 2016, 10, 388.	2.0	10
41	Hemispheric specialization in spatial versus ordinal processing in the dayâ€old domestic chick (<i>Gallus gallus</i>). Annals of the New York Academy of Sciences, 2020, 1477, 34-43.	3.8	10
42	What is a number? The interplay between number and continuous magnitudes. Behavioral and Brain Sciences, 2017, 40, e187.	0.7	8
43	Individually distinctive features facilitate numerical discrimination of sets of objects in domestic chicks. Scientific Reports, 2020, 10, 16408.	3.3	8
44	Response of male and female domestic chicks to change in the number (quantity) of imprinting objects. Learning and Behavior, 2021, 49, 54-66.	1.0	8
45	Numerical Affordance Influences Action Execution: A Kinematic Study of Finger Movement. Frontiers in Psychology, 2018, 9, 637.	2.1	7
46	Cognitive and communicative pressures in the emergence of grammatical structure: A closer look at whether number sense is encoded in privileged ways. Cognitive Neuropsychology, 2020, 37, 355-358.	1.1	7
47	Effects of animacy on the processing of morphological Number: a cognitive inheritance?. Word Structure, 2020, 13, 22-44.	0.5	6
48	Piece of Evidence. Commentary: Ancestral Mental Number Lines: What Is the Evidence?. Frontiers in Psychology, 2016, 7, 553.	2.1	5
49	Experimental Evidence From Newborn Chicks Enriches Our Knowledge on Human Spatial–Numerical Associations. Cognitive Science, 2017, 41, 2275-2279.	1.7	4
50	Children perform better on left than right targets in an ordinal task. Acta Psychologica, 2022, 226, 103560.	1.5	4
51	Middle identification for rhesus monkeys is influenced by number but not extent. Scientific Reports, 2020, 10, 17402.	3.3	3
52	Spatial–Numerical Association in Nonhuman Animals. , 2021, , 602-620.		3
53	Approach direction and accuracy, but not response times, show spatial-numerical association in chicks. PLoS ONE, 2021, 16, e0257764.	2.5	2
54	Relative numerical middle in rhesus monkeys. Biology Letters, 2022, 18, 20210426.	2.3	2

#	Article	IF	CITATIONS
55	"From small to large: Numerical discrimination by young domestic chicks (Gallus gallus)†Correction to Rugani, Vallortigara, and Regolin (2013) Journal of Comparative Psychology (Washington, D C:) Tj ETQq1 1 0.	7 84 314 r	g B IT /Overloo
56	Subtraction. , 2018, , 1-3.		0
57	Numerical Abilities in Nonhumans: The Perspective of Comparative Studies. , 2021, , 1-33.		0
58	Subtraction. , 2022, , 6766-6768.		0
59	Are Rational Numbers Spontaneous? Natural Numbers Suffice all Processing by the Number Sense. Cognitive Science, 2022, 46, .	1.7	0