Anna Huttenlocher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1408786/publications.pdf

Version: 2024-02-01

94 papers 7,734 citations

71102 41 h-index 83 g-index

104 all docs

104 docs citations

104 times ranked 10237 citing authors

#	Article	IF	CITATIONS
1	Realâ€time imaging of inflammation and its resolution: It's apparent because it's transparent*. Immunological Reviews, 2022, 306, 258-270.	6.0	14
2	In vivo fluorescence lifetime imaging of macrophage intracellular metabolism during wound responses in zebrafish. ELife, 2022, $11,\ldots$	6.0	19
3	Cell Type-Specific Transcriptome Profiling Reveals a Role for Thioredoxin During Tumor Initiation. Frontiers in Immunology, 2022, 13, 818893.	4.8	1
4	Switching to the cyclic pentose phosphate pathway powers the oxidative burst in activated neutrophils. Nature Metabolism, 2022, 4, 389-403.	11.9	58
5	Neutrophil phenotypes and functions in cancer: A consensus statement. Journal of Experimental Medicine, 2022, 219, .	8.5	119
6	Anomalous diffusion and asymmetric tempering memory in neutrophil chemotaxis. PLoS Computational Biology, 2022, 18, e1010089.	3.2	9
7	Immune Cell Paracrine Signaling Drives the Neutrophil Response to A. fumigatus in an Infection-on-a-Chip Model. Cellular and Molecular Bioengineering, 2021, 14, 133-145.	2.1	15
8	Cell Migration Guided by Cell–Cell Contacts in Innate Immunity. Trends in Cell Biology, 2021, 31, 86-94.	7.9	11
9	A reconfigurable microscale assay enables insights into cancer-associated fibroblast modulation of immune cell recruitment. Integrative Biology (United Kingdom), 2021, 13, 87-97.	1.3	6
10	Myeloid-derived growth factor regulates neutrophil motility in interstitial tissue damage. Journal of Cell Biology, 2021, 220, .	5 . 2	18
11	Swarming motility in host defense. Science, 2021, 372, 1262-1263.	12.6	6
12	Candida auris Cell Wall Mannosylation Contributes to Neutrophil Evasion through Pathways Divergent from Candida albicans and Candida glabrata. MSphere, 2021, 6, e0040621.	2.9	23
13	Centriole and Golgi microtubule nucleation are dispensable for the migration of human neutrophil-like cells. Molecular Biology of the Cell, 2021, 32, 1545-1556.	2.1	5
14	Signal integration in forward and reverse neutrophil migration: Fundamentals and emerging mechanisms. Current Opinion in Cell Biology, 2021, 72, 124-130.	5.4	6
15	Microfluidic Systems to Study Neutrophil Forward and Reverse Migration. Frontiers in Immunology, 2021, 12, 781535.	4.8	5
16	Guide to the Larval Zebrafishâ€∢i>Aspergillus Infection Model. Current Protocols, 2021, 1, e317.	2.9	3
17	Neutrophil phagocyte oxidase activity controls invasive fungal growth and inflammation in zebrafish. Journal of Cell Science, 2020, 133, .	2.0	24
18	Cell type specific gene expression profiling reveals a role for complement component C3 in neutrophil responses to tissue damage. Scientific Reports, 2020, 10, 15716.	3.3	16

#	Article	IF	CITATIONS
19	Distinct Tissue Damage and Microbial Cues Drive Neutrophil and Macrophage Recruitment to Thermal Injury. IScience, 2020, 23, 101699.	4.1	13
20	Generation of Human Neutrophils from Induced Pluripotent Stem Cells in Chemically Defined Conditions Using ETV2 Modified mRNA. STAR Protocols, 2020, 1, 100075.	1.2	4
21	DnaJ-PKAc fusion induces liver inflammation in a zebrafish model of Fibrolamellar Carcinoma. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	7
22	Contributions of Spore Secondary Metabolites to UV-C Protection and Virulence Vary in Different Aspergillus fumigatus Strains. MBio, 2020, 11 , .	4.1	32
23	Efficacy of Voriconazole against Aspergillus fumigatus Infection Depends on Host Immune Function. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	17
24	Functional Characterization of Clinical Isolates of the Opportunistic Fungal Pathogen Aspergillus nidulans. MSphere, 2020, 5, .	2.9	32
25	Citrullination regulates wound responses and tissue regeneration in zebrafish. Journal of Cell Biology, 2020, 219, .	5.2	9
26	Zena Werb (1945–2020): Cell biology in context. Journal of Cell Biology, 2020, 219, .	5.2	1
27	Phenotypical microRNA screen reveals a noncanonical role of CDK2 in regulating neutrophil migration. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18561-18570.	7.1	39
28	Effective and Rapid Generation of Functional Neutrophils from Induced Pluripotent Stem Cells Using ETV2-Modified mRNA. Stem Cell Reports, 2019, 13, 1099-1110.	4.8	31
29	Efficient Front-Rear Coupling in Neutrophil Chemotaxis by Dynamic Myosin II Localization. Developmental Cell, 2019, 49, 189-205.e6.	7.0	59
30	Neutrophil plasticity in the tumor microenvironment. Blood, 2019, 133, 2159-2167.	1.4	392
31	Neutrophil trafficking on-a-chip: an <i>in vitro</i> , organotypic model for investigating neutrophil priming, extravasation, and migration with spatiotemporal control. Lab on A Chip, 2019, 19, 3697-3705.	6.0	27
32	Filopodia and focal adhesions: An integrated system driving branching morphogenesis in neuronal pathfinding and angiogenesis. Developmental Biology, 2019, 451, 86-95.	2.0	56
33	Metformin modulates innate immune-mediated inflammation and early progression of NAFLD-associated hepatocellular carcinoma in zebrafish. Journal of Hepatology, 2019, 70, 710-721.	3.7	122
34	Distinct inflammatory and wound healing responses to complex caudal fin injuries of larval zebrafish. ELife, 2019, 8, .	6.0	72
35	Motile Collectors: Platelets Promote Innate Immunity. Immunity, 2018, 48, 16-18.	14.3	9
36	An Accessible Organotypic Microvessel Model Using iPSCâ€Derived Endothelium. Advanced Healthcare Materials, 2018, 7, 1700497.	7.6	42

#	Article	IF	Citations
37	Neutrophil Reverse Migration and a Chemokinetic Resolution. Developmental Cell, 2018, 47, 404-405.	7.0	19
38	The Zebrafish as a Model Host for Invasive Fungal Infections. Journal of Fungi (Basel, Switzerland), 2018, 4, 136.	3.5	47
39	Cxcr1 mediates recruitment of neutrophils and supports proliferation of tumor-initiating astrocytes in vivo. Scientific Reports, 2018, 8, 13285.	3.3	47
40	Damage-induced reactive oxygen species regulate vimentin and dynamic collagen-based projections to mediate wound repair. ELife, 2018, 7, .	6.0	57
41	Macrophages inhibit Aspergillus fumigatus germination and neutrophil-mediated fungal killing. PLoS Pathogens, 2018, 14, e1007229.	4.7	106
42	Selenate sensitivity of a laeA mutant is restored by overexpression of the bZIP protein MetR in Aspergillus fumigatus. Fungal Genetics and Biology, 2018, 117, 1-10.	2.1	15
43	Interaction with an endothelial lumen increases neutrophil lifetime and motility in response to P aeruginosa. Blood, 2018, 132, 1818-1828.	1.4	36
44	Mutations in Lyn Kinase Causes Changes in Neutrophil Function and Migration. FASEB Journal, 2018, 32,	0.5	0
45	Elucidating interactions between zebrafish innate immune system and cancer progression. FASEB Journal, 2018, 32, 804.34.	0.5	0
46	Aspergillus fumigatus Copper Export Machinery and Reactive Oxygen Intermediate Defense Counter Host Copper-Mediated Oxidative Antimicrobial Offense. Cell Reports, 2017, 19, 1008-1021.	6.4	95
47	Chemokine Signaling and the Regulation of Bidirectional Leukocyte Migration in Interstitial Tissues. Cell Reports, 2017, 19, 1572-1585.	6.4	103
48	Real-time visualization of immune cell clearance of Aspergillus fumigatus spores and hyphae. Fungal Genetics and Biology, 2017, 105, 52-54.	2.1	23
49	Live imaging reveals distinct modes of neutrophil and macrophage migration within interstitial tissues. Journal of Cell Science, 2017, 130, 3801-3808.	2.0	95
50	Long-term Live Imaging Device for Improved Experimental Manipulation of Zebrafish Larvae. Journal of Visualized Experiments, 2017, , .	0.3	6
51	zWEDGI: Wounding and Entrapment Device for Imaging Live Zebrafish Larvae. Zebrafish, 2017, 14, 42-50.	1.1	31
52	Neutrophil derived LTB4 induces macrophage aggregation in response to encapsulated Streptococcus iniae infection. PLoS ONE, 2017, 12, e0179574.	2.5	17
53	Macrophages mediate flagellin induced inflammasome activation and host defense in zebrafish. Cellular Microbiology, 2016, 18, 591-604.	2.1	72
54	Neutrophil migration in infection and wound repair: going forward in reverse. Nature Reviews Immunology, 2016, 16, 378-391.	22.7	736

#	Article	IF	CITATIONS
55	Mammalian Actin-binding Protein-1/Hip-55 Interacts with FHL2 and Negatively Regulates Cell Invasion. Journal of Biological Chemistry, 2016, 291, 13987-13998.	3.4	15
56	A Zebrafish Model of Cryptococcal Infection Reveals Roles for Macrophages, Endothelial Cells, and Neutrophils in the Establishment and Control of Sustained Fungemia. Infection and Immunity, 2016, 84, 3047-3062.	2.2	56
57	Leading from the Back: The Role of the Uropod in Neutrophil Polarization and Migration. Developmental Cell, 2016, 38, 161-169.	7.0	118
58	Rac2 Functions in Both Neutrophils and Macrophages To Mediate Motility and Host Defense in Larval Zebrafish. Journal of Immunology, 2016, 197, 4780-4790.	0.8	46
59	Characterization of Aspergillus fumigatus Isolates from Air and Surfaces of the International Space Station. MSphere, 2016, 1 , .	2.9	108
60	Neutrophils in the Tumor Microenvironment. Trends in Immunology, 2016, 37, 41-52.	6.8	456
61	The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps. PLoS Pathogens, 2016, 12, e1005884.	4.7	105
62	Non-invasive Imaging of the Innate Immune Response in a Zebrafish Larval Model of Streptococcus iniae Infection. Journal of Visualized Experiments, 2015, , .	0.3	12
63	In Vivo Imaging and Characterization of Actin Microridges. PLoS ONE, 2015, 10, e0115639.	2.5	64
64	Neutrophils in host defense: new insights from zebrafish. Journal of Leukocyte Biology, 2015, 98, 523-537.	3.3	103
65	Neutrophils, Wounds, and Cancer Progression. Developmental Cell, 2015, 34, 134-136.	7.0	18
66	Matrix metalloproteinase 9 modulates collagen matrices and wound repair. Development (Cambridge), 2015, 142, 2136-2146.	2.5	111
67	Adenosine signaling promotes hematopoietic stem and progenitor cell emergence. Journal of Experimental Medicine, 2015, 212, 649-663.	8.5	73
68	Integrin associated proteins differentially regulate neutrophil polarity and directed migration in 2D and 3D. Biomedical Microdevices, 2015, 17, 100.	2.8	33
69	Strategies from UW-Madison for rescuing biomedical research in the US. ELife, 2015, 4, e09305.	6.0	30
70	Live Imaging and Gene Expression Analysis in Zebrafish Identifies a Link between Neutrophils and Epithelial to Mesenchymal Transition. PLoS ONE, 2014, 9, e112183.	2.5	52
71	Redox and Src family kinase signaling control leukocyte wound attraction and neutrophil reverse migration. Journal of Cell Biology, 2014, 207, 589-598.	5.2	119
72	Editorial overview: Cell adhesion and migration. Current Opinion in Cell Biology, 2014, 30, v-vi.	5.4	1

#	Article	IF	CITATIONS
73	Distinct Innate Immune Phagocyte Responses to Aspergillus fumigatus Conidia and Hyphae in Zebrafish Larvae. Eukaryotic Cell, 2014, 13, 1266-1277.	3.4	82
74	Inflammation and wound repair. Seminars in Immunology, 2014, 26, 315-320.	5.6	54
75	Spinning Disk Confocal Imaging of Neutrophil Migration in Zebrafish. Methods in Molecular Biology, 2014, 1124, 219-233.	0.9	21
76	Localized bacterial infection induces systemic activation of neutrophils through Cxcr2 signaling in zebrafish. Journal of Leukocyte Biology, 2013, 93, 761-769.	3.3	94
77	Innate Immune Response to Streptococcus iniae Infection in Zebrafish Larvae. Infection and Immunity, 2013, 81, 110-121.	2.2	91
78	Heat Shock Modulates Neutrophil Motility in Zebrafish. PLoS ONE, 2013, 8, e84436.	2.5	26
79	Early redox, Src family kinase, and calcium signaling integrate wound responses and tissue regeneration in zebrafish. Journal of Cell Biology, 2012, 199, 225-234.	5.2	179
80	The role of microtubules in neutrophil polarity and migration in live zebrafish. Journal of Cell Science, 2012, 125, 5702-5710.	2.0	70
81	The SH2-domain-containing inositol 5-phosphatase (SHIP) limits neutrophil motility and wound recruitment in zebrafish. Journal of Cell Science, 2012, 125, 4973-8.	2.0	48
82	Citrullination of fibronectin modulates synovial fibroblast behavior. Arthritis Research and Therapy, 2012, 14, R240.	3.5	40
83	Distinct signalling mechanisms mediate neutrophil attraction to bacterial infection and tissue injury. Cellular Microbiology, 2012, 14, 517-528.	2.1	63
84	Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature, 2011, 480, 109-112.	27.8	388
85	Dual Roles for Rac2 in Neutrophil Motility and Active Retention in Zebrafish Hematopoietic Tissue. Developmental Cell, 2011, 21, 735-745.	7.0	133
86	Spatiotemporal photolabeling of neutrophil trafficking during inflammation in live zebrafish. Journal of Leukocyte Biology, 2011, 89, 661-667.	3.3	159
87	Integrins in Cell Migration. Cold Spring Harbor Perspectives in Biology, 2011, 3, a005074-a005074.	5.5	603
88	Live imaging of neutrophil motility in a zebrafish model of WHIM syndrome. Blood, 2010, 116, 2803-2811.	1.4	149
89	Differential Regulation of Protrusion and Polarity by PI(3)K during Neutrophil Motility in Live Zebrafish. Developmental Cell, 2010, 18, 226-236.	7.0	338
90	Characterization of zebrafish larval inflammatory macrophages. Developmental and Comparative Immunology, 2009, 33, 1212-1217.	2.3	139

#	Article	IF	CITATIONS
91	Neutrophil Motility In Vivo Using Zebrafish. Methods in Molecular Biology, 2009, 571, 151-166.	0.9	24
92	Reverse leukocyte migration can be attractive or repulsive. Trends in Cell Biology, 2008, 18, 298-306.	7.9	61
93	Live imaging of chronic inflammation caused by mutation of zebrafish Hai1. Journal of Cell Science, 2007, 120, 3372-3383.	2.0	117
94	Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. Journal of Leukocyte Biology, 2006, 80, 1281-1288.	3.3	457