
## Witold K Surewicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1408774/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nature<br>Structural Biology, 2001, 8, 770-774.                                                                                    | 9.7  | 474       |
| 2  | Molecular architecture of human prion protein amyloid: A parallel, in-register Î <sup>2</sup> -structure.<br>Proceedings of the National Academy of Sciences of the United States of America, 2007, 104,<br>18946-18951. | 7.1  | 302       |
| 3  | Acceleration of Amyloid Fibril Formation by Specific Binding of Aβ-(1–40) Peptide to<br>Ganglioside-containing Membrane Vesicles. Journal of Biological Chemistry, 1997, 272, 22987-22990.                               | 3.4  | 291       |
| 4  | Temperature-induced exposure of hydrophobic surfaces and its effect on the chaperone activity of<br>α-crystallin. FEBS Letters, 1995, 369, 321-325.                                                                      | 2.8  | 261       |
| 5  | Interaction between Human Prion Protein and Amyloid-β (Aβ) Oligomers. Journal of Biological<br>Chemistry, 2010, 285, 26377-26383.                                                                                        | 3.4  | 244       |
| 6  | Fibril Conformation as the Basis of Species- and Strain-Dependent Seeding Specificity of Mammalian Prion Amyloids. Cell, 2005, 121, 63-72.                                                                               | 28.9 | 242       |
| 7  | pH-dependent Stability and Conformation of the Recombinant Human Prion Protein PrP(90–231).<br>Journal of Biological Chemistry, 1997, 272, 27517-27520.                                                                  | 3.4  | 239       |
| 8  | The role of liquid–liquid phase separation in aggregation of the TDP-43 low-complexity domain.<br>Journal of Biological Chemistry, 2019, 294, 6306-6317.                                                                 | 3.4  | 238       |
| 9  | Membrane Environment Alters the Conformational Structure of the Recombinant Human Prion<br>Protein. Journal of Biological Chemistry, 1999, 274, 36859-36865.                                                             | 3.4  | 230       |
| 10 | beta-Sheet core of human prion protein amyloid fibrils as determined by hydrogen/deuterium<br>exchange. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104,<br>1510-1515.        | 7.1  | 218       |
| 11 | Aggregation and Fibrillization of the Recombinant Human Prion Protein huPrP90â^'231. Biochemistry, 2000, 39, 424-431.                                                                                                    | 2.5  | 216       |
| 12 | Structural organization of brain-derived mammalian prions examined by hydrogen-deuterium exchange. Nature Structural and Molecular Biology, 2011, 18, 504-506.                                                           | 8.2  | 206       |
| 13 | Mammalian Prions Generated from Bacterially Expressed Prion Protein in the Absence of Any<br>Mammalian Cofactors. Journal of Biological Chemistry, 2010, 285, 14083-14087.                                               | 3.4  | 195       |
| 14 | Molecular conformation and dynamics of the Y145Stop variant of human prion protein in amyloid<br>fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105,<br>6284-6289.      | 7.1  | 182       |
| 15 | Prion Diseases and Their Biochemical Mechanisms. Biochemistry, 2009, 48, 2574-2585.                                                                                                                                      | 2.5  | 181       |
| 16 | Familial Mutations and the Thermodynamic Stability of the Recombinant Human Prion Protein. Journal of Biological Chemistry, 1998, 273, 31048-31052.                                                                      | 3.4  | 176       |
| 17 | The interaction between Alzheimer amyloid β(1–40) peptide and ganglioside G <sub>M1</sub> â€containing membranes. FEBS Letters, 1997, 402, 95-98.                                                                        | 2.8  | 169       |
| 18 | Rapidly progressive Alzheimer's disease features distinct structures of amyloid-β. Brain, 2015, 138,<br>1009-1022.                                                                                                       | 7.6  | 166       |

| #  | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The Prion Protein Has RNA Binding and Chaperoning Properties Characteristic of Nucleocapsid<br>Protein NCp7 of HIV-1. Journal of Biological Chemistry, 2001, 276, 19301-19309.                                                                        | 3.4  | 163       |
| 20 | Liquid–Liquid Phase Separation and Its Mechanistic Role in Pathological Protein Aggregation. Journal of Molecular Biology, 2020, 432, 1910-1925.                                                                                                      | 4.2  | 163       |
| 21 | Temperature-dependent Chaperone Activity and Structural Properties of Human αA- and αB-crystallins.<br>Journal of Biological Chemistry, 2000, 275, 4565-4570.                                                                                         | 3.4  | 157       |
| 22 | On the Mechanism of α-Helix to β-Sheet Transition in the Recombinant Prion Proteinâ€. Biochemistry, 2001,<br>40, 6982-6987.                                                                                                                           | 2.5  | 155       |
| 23 | Liquid–liquid phase separation of tau protein: The crucial role of electrostatic interactions. Journal of Biological Chemistry, 2019, 294, 11054-11059.                                                                                               | 3.4  | 155       |
| 24 | The Effect of Disease-associated Mutations on the Folding Pathway of Human Prion Protein. Journal of Biological Chemistry, 2004, 279, 18008-18014.                                                                                                    | 3.4  | 144       |
| 25 | Molecular Basis of Barriers for Interspecies Transmissibility of Mammalian Prions. Molecular Cell, 2004, 14, 139-145.                                                                                                                                 | 9.7  | 129       |
| 26 | Conformational Flexibility of Y145Stop Human Prion Protein Amyloid Fibrils Probed by Solid-State<br>Nuclear Magnetic Resonance Spectroscopy. Journal of the American Chemical Society, 2010, 132,<br>2393-2403.                                       | 13.7 | 126       |
| 27 | Solution Structure of the E200K Variant of Human Prion Protein. Journal of Biological Chemistry, 2000, 275, 33650-33654.                                                                                                                              | 3.4  | 120       |
| 28 | The prion protein has DNA strand transfer properties similar to retroviral nucleocapsid protein 1<br>1Edited by J. Karn. Journal of Molecular Biology, 2001, 307, 1011-1021.                                                                          | 4.2  | 118       |
| 29 | Mechanisms of Neurotoxicity Associated with Amyloid β Deposition and the Role of Free Radicals in the<br>Pathogenesis of Alzheimer's Disease:  A Critical Appraisal. Chemical Research in Toxicology, 1997, 10,<br>518-526.                           | 3.3  | 110       |
| 30 | Identification of an epitope in the C terminus of normal prion protein whose expression is modulated<br>by binding events in the N terminus 1 1Edited by F. Cohen. Journal of Molecular Biology, 2000, 301,<br>567-573.                               | 4.2  | 110       |
| 31 | Conformational diversity in prion protein variants influences intermolecular β-sheet formation. EMBO<br>Journal, 2010, 29, 251-262.                                                                                                                   | 7.8  | 105       |
| 32 | The Role of Disulfide Bridge in the Folding and Stability of the Recombinant Human Prion Protein.<br>Journal of Biological Chemistry, 2001, 276, 2427-2431.                                                                                           | 3.4  | 100       |
| 33 | Molecular biology and pathology of prion strains in sporadic human prion diseases. Acta<br>Neuropathologica, 2011, 121, 79-90.                                                                                                                        | 7.7  | 96        |
| 34 | Small molecules as potent biphasic modulators of protein liquid-liquid phase separation. Nature<br>Communications, 2020, 11, 5574.                                                                                                                    | 12.8 | 96        |
| 35 | Nucleation-dependent conformational conversion of the Y145Stop variant of human prion protein:<br>Structural clues for prion propagation. Proceedings of the National Academy of Sciences of the<br>United States of America, 2003, 100, 12069-12074. | 7.1  | 92        |
| 36 | Conformational Properties of Substrate Proteins Bound to a Molecular Chaperone α-Crystallin.<br>Journal of Biological Chemistry, 1996, 271, 10449-10452.                                                                                              | 3.4  | 89        |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | DNA Aptamers That Bind to PrP <sup>C</sup> and Not Prp <sup>Sc</sup> Show Sequence and Structure Specificity. Experimental Biology and Medicine, 2006, 231, 204-214.                                                     | 2.4  | 89        |
| 38 | Cryo-EM structure of amyloid fibrils formed by the entire low complexity domain of TDP-43. Nature Communications, 2021, 12, 1620.                                                                                        | 12.8 | 85        |
| 39 | Unusual proteolysis of the protoxin and toxin from Bacillus thuringiensis. Structural implications.<br>FEBS Journal, 1990, 189, 523-527.                                                                                 | 0.2  | 84        |
| 40 | Kinetic Intermediate in the Folding of Human Prion Protein. Journal of Biological Chemistry, 2002, 277, 44589-44592.                                                                                                     | 3.4  | 83        |
| 41 | Zinc promotes liquid–liquid phase separation of tau protein. Journal of Biological Chemistry, 2020, 295, 5850-5856.                                                                                                      | 3.4  | 80        |
| 42 | Soluble Prion Protein Inhibits Amyloid-β (Aβ) Fibrillization and Toxicity. Journal of Biological Chemistry,<br>2012, 287, 33104-33108.                                                                                   | 3.4  | 79        |
| 43 | Distinct Structures of Scrapie Prion Protein (PrPSc)-seeded Versus Spontaneous Recombinant Prion<br>Protein Fibrils Revealed by Hydrogen/Deuterium Exchange. Journal of Biological Chemistry, 2009, 284,<br>24233-24241. | 3.4  | 78        |
| 44 | Polymorphism at Residue 129 Modulates the Conformational Conversion of the D178N Variant of<br>Human Prion Protein 90â^231â€. Biochemistry, 2005, 44, 15880-15888.                                                       | 2.5  | 76        |
| 45 | Antimicrobial Activity of Human Prion Protein Is Mediated by Its N-Terminal Region. PLoS ONE, 2009, 4, e7358.                                                                                                            | 2.5  | 73        |
| 46 | Atypical Effect of Salts on the Thermodynamic Stability of Human Prion Protein. Journal of Biological<br>Chemistry, 2003, 278, 22187-22192.                                                                              | 3.4  | 72        |
| 47 | Prion Protein and Its Conformational Conversion: A Structural Perspective. Topics in Current Chemistry, 2011, 305, 135-167.                                                                                              | 4.0  | 72        |
| 48 | Small Protease Sensitive Oligomers of PrPSc in Distinct Human Prions Determine Conversion Rate of<br>PrPC. PLoS Pathogens, 2012, 8, e1002835.                                                                            | 4.7  | 72        |
| 49 | Regulatory mechanisms of tau protein fibrillation under the conditions of liquid–liquid phase<br>separation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117,<br>31882-31890. | 7.1  | 70        |
| 50 | Conformational properties of azurin in solution as determined from resolution-enhanced<br>Fourier-transform infrared spectra. FEBS Journal, 1987, 167, 519-523.                                                          | 0.2  | 68        |
| 51 | Amyloid fibrils from the N-terminal prion protein fragment are infectious. Proceedings of the<br>National Academy of Sciences of the United States of America, 2016, 113, 13851-13856.                                   | 7.1  | 68        |
| 52 | Disease-associated F198S Mutation Increases the Propensity of the Recombinant Prion Protein for<br>Conformational Conversion to Scrapie-like Form. Journal of Biological Chemistry, 2002, 277,<br>49065-49070.           | 3.4  | 67        |
| 53 | Early Intermediate in Human Prion Protein Folding As Evidenced by Ultrarapid Mixing Experiments.<br>Journal of the American Chemical Society, 2006, 128, 11673-11678.                                                    | 13.7 | 65        |
| 54 | Prion Protein Amyloid Formation under Native-like Conditions Involves Refolding of the C-terminal<br>α-Helical Domain. Journal of Biological Chemistry, 2008, 283, 34704-34711.                                          | 3.4  | 59        |

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Species-dependent structural polymorphism of Y145Stop prion protein amyloid revealed by solid-state<br>NMR spectroscopy. Nature Communications, 2017, 8, 753.                                                                      | 12.8 | 59        |
| 56 | Intermolecular Alignment in Y145Stop Human Prion Protein Amyloid Fibrils Probed by Solid-State NMR<br>Spectroscopy. Journal of the American Chemical Society, 2011, 133, 13934-13937.                                              | 13.7 | 57        |
| 57 | Crystal Structure of a Human Prion Protein Fragment Reveals a Motif for Oligomer Formation.<br>Journal of the American Chemical Society, 2013, 135, 10202-10205.                                                                   | 13.7 | 55        |
| 58 | The Emerging Principles of Mammalian Prion Propagation and Transmissibility Barriers:  Insight from Studies in Vitro. Accounts of Chemical Research, 2006, 39, 654-662.                                                            | 15.6 | 53        |
| 59 | PrP Conformational Transitions Alter Species Preference of a PrP-specific Antibody. Journal of<br>Biological Chemistry, 2010, 285, 13874-13884.                                                                                    | 3.4  | 50        |
| 60 | Insight into the Secondary Structure of Non-native Proteins Bound to a Molecular Chaperone<br>α-Crystallin. Journal of Biological Chemistry, 1999, 274, 33209-33212.                                                               | 3.4  | 48        |
| 61 | Structural Determinants of Phenotypic Diversity and Replication Rate of Human Prions. PLoS Pathogens, 2015, 11, e1004832.                                                                                                          | 4.7  | 47        |
| 62 | Conformational Stability of Mammalian Prion Protein Amyloid Fibrils Is Dictated by a Packing<br>Polymorphism within the Core Region. Journal of Biological Chemistry, 2014, 289, 2643-2650.                                        | 3.4  | 46        |
| 63 | Early preclinical detection of prions in the skin of prion-infected animals. Nature Communications, 2019, 10, 247.                                                                                                                 | 12.8 | 46        |
| 64 | Tau liquid–liquid phase separation in neurodegenerative diseases. Trends in Cell Biology, 2022, 32,<br>611-623.                                                                                                                    | 7.9  | 46        |
| 65 | Cellular Prion Protein Regulates Its Own α-Cleavage through ADAM8 in Skeletal Muscle. Journal of<br>Biological Chemistry, 2012, 287, 16510-16520.                                                                                  | 3.4  | 42        |
| 66 | The conformation of dynorphin A-(1–13) in aqueous solution as studied by fourier transform infrared spectroscopy. Journal of Molecular Structure, 1989, 214, 143-147.                                                              | 3.6  | 41        |
| 67 | Scanâ€rate dependence in protein calorimetry: The reversible transitions of <i>Bacillus circulans</i> xylanase and a disulfideâ€bridge mutant. Protein Science, 1998, 7, 1538-1544.                                                | 7.6  | 40        |
| 68 | Soluble prion protein and its N-terminal fragment prevent impairment of synaptic plasticity by Aβ<br>oligomers: Implications for novel therapeutic strategy in Alzheimer's disease. Neurobiology of<br>Disease, 2016, 91, 124-131. | 4.4  | 40        |
| 69 | A Metastable Contact and Structural Disorder in the Estrogen Receptor Transactivation Domain.<br>Structure, 2019, 27, 229-240.e4.                                                                                                  | 3.3  | 39        |
| 70 | Functional Interactions of Nucleocapsid Protein of Feline Immunodeficiency Virus and Cellular Prion<br>Protein with the Viral RNA. Journal of Molecular Biology, 2002, 318, 149-159.                                               | 4.2  | 38        |
| 71 | Structural Polymorphism in Amyloids. Journal of Biological Chemistry, 2011, 286, 42777-42784.                                                                                                                                      | 3.4  | 38        |
| 72 | Cellular Oxidant Stress and Advanced Glycation Endproducts of Albumin: Caveats of the Dichlorofluorescein Assay*. Archives of Biochemistry and Biophysics, 2002, 400, 15-25.                                                       | 3.0  | 37        |

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Conformational properties of angiotensin II in aqueous solution and in a lipid environment: a Fourier transform infrared spectroscopic investigation. Journal of the American Chemical Society, 1988, 110, 4412-4414. | 13.7 | 35        |
| 74 | The prion 2018 round tables (I): the structure of PrP <sup>Sc</sup> . Prion, 2019, 13, 46-52.                                                                                                                         | 1.8  | 34        |
| 75 | The role of glycophosphatidylinositol anchor in the amplification of the scrapie isoform of prion protein in vitro. FEBS Letters, 2009, 583, 3671-3675.                                                               | 2.8  | 33        |
| 76 | Artificial strain of human prions created in vitro. Nature Communications, 2018, 9, 2166.                                                                                                                             | 12.8 | 33        |
| 77 | Structural Studies of Amyloid Fibrils by Paramagnetic Solid-State Nuclear Magnetic Resonance<br>Spectroscopy. Journal of the American Chemical Society, 2018, 140, 13161-13166.                                       | 13.7 | 32        |
| 78 | Genetically Engineered Zinc-chelating Adenylate Kinase fromEscherichia coli with Enhanced Thermal<br>Stability. Journal of Biological Chemistry, 1998, 273, 19097-19101.                                              | 3.4  | 31        |
| 79 | Role of N-terminal Familial Mutations in Prion Protein Fibrillization and Prion Amyloid Propagation in<br>Vitro*. Journal of Biological Chemistry, 2006, 281, 8190-8196.                                              | 3.4  | 31        |
| 80 | Self-propagating, protease-resistant, recombinant prion protein conformers with or without in vivo pathogenicity. PLoS Pathogens, 2017, 13, e1006491.                                                                 | 4.7  | 31        |
| 81 | Post-translational modifications in PrP expand the conformational diversity of prions in vivo.<br>Scientific Reports, 2017, 7, 43295.                                                                                 | 3.3  | 30        |
| 82 | Enhanced neuroinvasion by smaller, soluble prions. Acta Neuropathologica Communications, 2017, 5, 32.                                                                                                                 | 5.2  | 29        |
| 83 | Membrane interactions and surface hydrophobicity ofBacillus thuringiensisî´-endotoxin CryIC. FEBS<br>Letters, 1994, 340, 89-92.                                                                                       | 2.8  | 28        |
| 84 | Interaction between Prion Protein and Aβ Amyloid Fibrils Revisited. ACS Chemical Neuroscience, 2014, 5, 340-345.                                                                                                      | 3.5  | 28        |
| 85 | Recombinant Human Prion Protein Inhibits Prion Propagation in vitro. Scientific Reports, 2013, 3, 2911.                                                                                                               | 3.3  | 27        |
| 86 | Structural attributes of mammalian prion infectivity: Insights from studies with synthetic prions.<br>Journal of Biological Chemistry, 2018, 293, 18494-18503.                                                        | 3.4  | 26        |
| 87 | Effect of phase transitions on the interaction of peptides and proteins with phospholipids. Canadian<br>Journal of Biochemistry and Cell Biology, 1984, 62, 1167-1173.                                                | 1.3  | 25        |
| 88 | Single amino acid substitutions can further increase the stability of a thermophilic L-lactate dehydrogenase. Protein Engineering, Design and Selection, 1992, 5, 769-774.                                            | 2.1  | 24        |
| 89 | Solution and membrane structure of enkephalins as studied by infrared spectroscopy. Biochemical and Biophysical Research Communications, 1988, 150, 245-251.                                                          | 2.1  | 23        |
| 90 | Gerstmann-StrÃ <b>¤</b> ssler-Scheinker disease revisited: accumulation of covalently-linked multimers of<br>internal prion protein fragments. Acta Neuropathologica Communications, 2019, 7, 85.                     | 5.2  | 22        |

| #   | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | 13C and 15N chemical shift assignments of mammalian Y145Stop prion protein amyloid fibrils.<br>Biomolecular NMR Assignments, 2017, 11, 75-80.                                                                                                      | 0.8 | 21        |
| 92  | Conformational Dynamics in the Core of Human Y145Stop Prion Protein Amyloid Probed by Relaxation Dispersion NMR. ChemPhysChem, 2019, 20, 311-317.                                                                                                  | 2.1 | 21        |
| 93  | Conformational Correlates of the Epitopes of Human Myelin Basic Protein Peptide 80?89. Journal of Neurochemistry, 1990, 55, 568-576.                                                                                                               | 3.9 | 20        |
| 94  | Nanomechanical Properties of Human Prion Protein Amyloid as Probed by Force Spectroscopy.<br>Biophysical Journal, 2008, 95, 2909-2915.                                                                                                             | 0.5 | 20        |
| 95  | Protein-solvent interfaces in human Y145Stop prion protein amyloid fibrils probed by paramagnetic solid-state NMR spectroscopy. Journal of Structural Biology, 2019, 206, 36-42.                                                                   | 2.8 | 20        |
| 96  | Soluble Prion Protein Binds Isolated Low Molecular Weight Amyloid-Î <sup>2</sup> Oligomers Causing Cytotoxicity<br>Inhibition. ACS Chemical Neuroscience, 2015, 6, 1972-1980.                                                                      | 3.5 | 19        |
| 97  | The toxic moiety of the Bacillus thuringiensis protoxin undergoes a conformational change upon activation. Biochemical and Biophysical Research Communications, 1991, 179, 933-938.                                                                | 2.1 | 18        |
| 98  | Mechanism of stabilization of Bacillus circulans xylanase upon the introduction of disulfide bonds.<br>Biophysical Chemistry, 2007, 125, 453-461.                                                                                                  | 2.8 | 18        |
| 99  | Effect of Lipid Structure on the Capacity of Myelin Basic Protein to Alter Vesicle Properties: Potent<br>Effects of Aliphatic Aldehydes in Promoting Basic Protein-Induced Vesicle Aggregation. Journal of<br>Neurochemistry, 1984, 43, 1550-1555. | 3.9 | 17        |
| 100 | Secondary structure of the entomocidal toxin fromBacillus thuringiensis subsp.kurstaki HD-73. The<br>Protein Journal, 1990, 9, 87-94.                                                                                                              | 1.1 | 17        |
| 101 | Membrane actions of water-soluble fusogens: Effect of dimethyl sulfoxide, glycerol and sucrose on lipid bilayer order and fluidity. Chemistry and Physics of Lipids, 1984, 34, 363-372.                                                            | 3.2 | 15        |
| 102 | Interaction of Shigella toxin with globotriaosyl ceramide receptor — Containing membranes: A<br>fluorescence study. Biochemical and Biophysical Research Communications, 1989, 160, 126-132.                                                       | 2.1 | 15        |
| 103 | The effect of β2â€Î±2 loop mutation on amyloidogenic properties of the prion protein. FEBS Letters, 2013, 587, 2918-2923.                                                                                                                          | 2.8 | 14        |
| 104 | Identification of prion protein-derived peptides of potential use in Alzheimer's disease therapy.<br>Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2143-2153.                                                            | 3.8 | 14        |
| 105 | Electron spin resonance study on the mechanism of polyethylene glycol-membrane interaction. FEBS<br>Letters, 1983, 151, 228-232.                                                                                                                   | 2.8 | 13        |
| 106 | Pharmacological Modulation of Three Modalities of CA1 Hippocampal Long-Term Potentiation in the Ts65Dn Mouse Model of Down Syndrome. Neural Plasticity, 2018, 2018, 1-14.                                                                          | 2.2 | 12        |
| 107 | A novel mechanism of phenotypic heterogeneity in Creutzfeldt-Jakob disease. Acta Neuropathologica<br>Communications, 2020, 8, 85.                                                                                                                  | 5.2 | 12        |
| 108 | Studying Protein Aggregation in the Context of Liquid-liquid Phase Separation Using Fluorescence<br>and Atomic Force Microscopy, Fluorescence and Turbidity Assays, and FRAP. Bio-protocol, 2020, 10, .                                            | 0.4 | 11        |

| #   | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Propranolol-induced structural changes in human erythrocyte ghost membranes. Biochemical<br>Pharmacology, 1982, 31, 691-694.                                                                                                                       | 4.4  | 10        |
| 110 | Effect of quinidine on membrane properties. Biochemical Pharmacology, 1983, 32, 1467-1471.                                                                                                                                                         | 4.4  | 10        |
| 111 | Effect of osmotic gradient on the physical properties of membrane lipids in liposomes. Chemistry and Physics of Lipids, 1983, 33, 81-85.                                                                                                           | 3.2  | 9         |
| 112 | Role of peptide structure in lipid-peptide interactions: nuclear magnetic resonance study of the<br>interaction of pentagastrin and [Arg4]pentagastrin with dimyristolyphosphatidylcholine. Chemistry<br>and Physics of Lipids, 1988, 49, 105-110. | 3.2  | 7         |
| 113 | Prion strains under the magnifying glass. Nature Structural and Molecular Biology, 2007, 14, 882-884.                                                                                                                                              | 8.2  | 6         |
| 114 | From Neurodegeneration to Brain Health: AnÂIntegrated Approach. Journal of Alzheimer's Disease, 2015,<br>46, 271-283.                                                                                                                              | 2.6  | 6         |
| 115 | Structural and physico-chemical characteristics of Bordetella pertussis adenylate kinase, a tryptophan-containing enzyme. FEBS Journal, 1993, 218, 921-927.                                                                                        | 0.2  | 4         |
| 116 | Soluble polymorphic bank vole prion proteins induced by co-expression of quiescin sulfhydryl oxidase in E. coli and their aggregation behaviors. Microbial Cell Factories, 2017, 16, 170.                                                          | 4.0  | 4         |
| 117 | Discriminating taste of prions. Nature, 2007, 447, 541-542.                                                                                                                                                                                        | 27.8 | 2         |
| 118 | The effect of local anaesthetics on the osmotic fragility of liposomes. Biochemical Pharmacology, 1982, 31, 2999-3000.                                                                                                                             | 4.4  | 1         |
| 119 | 13C and 15N chemical shift assignments of A117V and M129V human Y145Stop prion protein amyloid fibrils. Biomolecular NMR Assignments, 2021, 15, 45-51.                                                                                             | 0.8  | 1         |
| 120 | Influence of the Dynamically Disordered N-Terminal Tail Domain on the Amyloid Core Structure of<br>Human Y145Stop Prion Protein Fibrils. Frontiers in Molecular Biosciences, 2022, 9, 841790.                                                      | 3.5  | 1         |
| 121 | Reply to Kascsak: Definition of the PrP 3F4 Epitope Revisited. Journal of Biological Chemistry, 2010, 285,<br>le6.                                                                                                                                 | 3.4  | 0         |