
Shi-you Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1408739/publications.pdf Version: 2024-02-01

SHLVOULI

#	Article	IF	CITATIONS
1	Adjusting the solvation structure with tris(trimethylsilyl)borate additive to improve the performance of LNCM half cells. Journal of Energy Chemistry, 2022, 67, 55-64.	12.9	32
2	Effect of temperature on formation and evolution of solid electrolyte interphase on Si@Graphite@C anodes. Journal of Energy Chemistry, 2022, 64, 190-200.	12.9	39
3	Insights into the improved cycle and rate performance by ex-situ F and in-situ Mg dual doping of layered oxide cathodes for sodium-ion batteries. Energy Storage Materials, 2022, 45, 1153-1164.	18.0	43
4	Anions Tuned Solid Electrolyte Interphase in Lithiumâ€lon Batteries. Batteries and Supercaps, 2022, 5, .	4.7	4
5	Exploring the action mechanism of magnesium in different cations sites for LiNi0.5Mn1.5O4 cathode materials. Materials Today Sustainability, 2022, 17, 100105.	4.1	2
6	Improve the Electrochemical Performance of Na ₂ Ti ₃ O ₇ Nanorod through Pitch Coating. ACS Sustainable Chemistry and Engineering, 2022, 10, 4247-4257.	6.7	9
7	Analysis of Main Factors Limiting the Improvement of Electrochemical Performances of Lowâ€Concentration Electrolyte. Energy Technology, 2022, 10, .	3.8	3
8	Destructive effects of transitional metal ions on interfacial film of carbon anode for lithium-ion batteries. Electrochimica Acta, 2022, 417, 140334.	5.2	8
9	Effects of soluble products decomposed from chelato-borate additives on formation of solid electrolyte interface layers. Journal of Power Sources, 2022, 535, 231451.	7.8	17
10	Design and performance improvement of SiNPs@graphene@C composite with a popcorn structure. Journal of Energy Chemistry, 2022, 72, 405-415.	12.9	14
11	Structural evolution of nickel-rich layered cathode material LiNi0.8Co0.1Mn0.1O2 at different current rates. Ionics, 2021, 27, 517-526.	2.4	5
12	In-situ construction of porous Si@C composites with LiCl template to provide silicon anode expansion buffer. Carbon, 2021, 173, 687-695.	10.3	63
13	Influences and Mechanisms of Water on a Solid Electrolyte Interphase Film for Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 1199-1207.	5.1	7
14	Which of the nickel-rich NCM and NCA is structurally superior as a cathode material for lithium-ion batteries?. Journal of Materials Chemistry A, 2021, 9, 13540-13551.	10.3	71
15	Optimizing the composition of LiFSI-based electrolytes by a method combining simplex with normalization. RSC Advances, 2021, 11, 26102-26109.	3.6	5
16	Simultaneously Dual Modification of a Ternary Cathode Material by Aluminum Bis(oxalato)borate-Based Electrolyte. ACS Applied Energy Materials, 2021, 4, 1601-1609.	5.1	0
17	Mechanism of aluminum corrosion in LiFSI-based electrolyte at elevated temperatures. Transactions of Nonferrous Metals Society of China, 2021, 31, 1439-1451.	4.2	22
18	Selection of Sodium Salt Electrolyte Compatible with Na _{0.67} Ni _{0.15} Fe _{0.2} Mn _{0.65} O ₂ Cathode for Sodiumâ€lon Batteries. Energy Technology, 2021, 9, 2100190.	3.8	10

#	Article	IF	CITATIONS
19	Boron and Phosphorus Dual-Doped Carbon Coating Improves Electrochemical Performances of LiFe _{0.8} Mn _{0.2} PO ₄ Cathode Materials. ACS Applied Energy Materials, 2021, 4, 8003-8015.	5.1	14
20	Granularity control enables high stability and elevated-temperature properties of micron-sized single-crystal LiNi0.5Mn1.5O4 cathodes at high voltage. Journal of Materiomics, 2021, 7, 1049-1060.	5.7	16
21	Which is the winner between the single-crystalline and polycrystalline LiNi0.80Co0.15Al0.05O2 cathode in the lithium-ion battery?. Materials Today Energy, 2021, 22, 100873.	4.7	11
22	Study on electrochemical performance of Al-substitution for different cations in Li-rich Mn-based materials. Electrochimica Acta, 2021, 394, 139136.	5.2	11
23	Modification of phosphorus-doped carbon coating enhances the electrochemical performance of LiFe0.8Mn0.2PO4 cathode material. Journal of Alloys and Compounds, 2021, 885, 160946.	5.5	8
24	Enhancing the interfacial stability of LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ cathode materials by a surface-concentration gradient strategy. Dalton Transactions, 2021, 50, 14187-14195.	3.3	2
25	Enhanced Electrochemical Performance of LiNi0.8Co0.1Mn0.1O2 Cathode Materials by Al2O3 Coating. Journal of Electrochemical Energy Conversion and Storage, 2021, 18, .	2.1	3
26	Boosting the comprehensive performance for a Co-free high-voltage system with a multi-component nitrile. New Journal of Chemistry, 2021, 45, 20681-20689.	2.8	4
27	An Interfacial Mechanism of Chelate-Borate Electrolyte Additives in Ni-Rich LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ Cathodes. ACS Applied Energy Materials, 2021, 4, 12525-12534.	5.1	9
28	Antioxidation Mechanism of Highly Concentrated Electrolytes at High Voltage. ACS Applied Materials & Interfaces, 2021, 13, 59580-59590.	8.0	20
29	The influence of the voltage plateau on the coulombic efficiency and capacity degradation in LiNi0.5Mn1.5O4 materials. Journal of Alloys and Compounds, 2020, 820, 153443.	5.5	27
30	Synergism of Cu and Al co-doping on improvements of structural integrity and electrochemical performance for LiNi0.5Mn1.5O4. Journal of Alloys and Compounds, 2020, 820, 153140.	5.5	40
31	Synthesis of a three-dimensional cross-linked Ni–V2O5 nanomaterial in an ionic liquid for lithium-ion batteries. RSC Advances, 2020, 10, 39137-39145.	3.6	5
32	Regulating the Performance of Lithium-Ion Battery Focus on the Electrode-Electrolyte Interface. Frontiers in Chemistry, 2020, 8, 821.	3.6	21
33	Investigation on electrochemical performance at the low temperature of LFP/C-P composite based on phosphorus doping carbon network. Ionics, 2020, 26, 3795-3808.	2.4	13
34	Investigation on the temperature tolerance of LiMn ₂ O ₄ in lithium-ion batteries. New Journal of Chemistry, 2020, 44, 9540-9545.	2.8	5
35	Study on boron-containing electrolytes at extra-high temperatures for lithium-ion batteries. Sustainable Energy and Fuels, 2020, 4, 4126-4136.	4.9	7
36	Enhanced Structural Stability of Boron-Doped Layered@Spinel@Carbon Heterostructured Lithium-Rich Manganese-Based Cathode Materials. ACS Sustainable Chemistry and Engineering, 2020, 8, 9311-9324.	6.7	60

#	Article	IF	CITATIONS
37	Tailoring interfacial architecture of high-voltage cathode with lithium difluoro(bisoxalato) phosphate for high energy density battery. Journal of Power Sources, 2020, 456, 228006.	7.8	35
38	Targeted research on the single role of lithium Bis(oxalate)borate in the film-forming process through a novel lithium salt-free electrolyte system. Journal of Power Sources, 2020, 471, 228426.	7.8	17
39	Spinel/layered heterostructured Li-rich Mn-based cathode material for high-capacity and high-rate Li-ion batteries. Journal of Materials Science: Materials in Electronics, 2020, 31, 5376-5384.	2.2	5
40	Regulating the composition distribution of layered SEI film on Li-ion battery anode by LiDFBOP. Electrochimica Acta, 2020, 337, 135745.	5.2	23
41	Synergistic effect of sulfolane and lithium Difluoro(oxalate)borate on improvement of compatibility for LiNi0.8Co0.15Al0.05O2 electrode. Electrochimica Acta, 2020, 337, 135727.	5.2	18
42	Optimizing transition metal ion ratio of LiNi0.5+xCo0.2+yMn0.3+zO2 (x+y+z=0) by simplex and normalization combined method. Electrochimica Acta, 2020, 337, 135709.	5.2	10
43	Studies of air-exposure effects and remediation measures on lithium bis(oxalato)borate. New Journal of Chemistry, 2019, 43, 14238-14245.	2.8	11
44	Understanding the role of Mg-doped on core-shell structured layered oxide LiNi0.6Co0.2Mn0.2O2. Electrochimica Acta, 2019, 319, 822-831.	5.2	39
45	Synthesis and electrochemical characterization of Mg–Al co-doped Li-rich Mn-based cathode materials. New Journal of Chemistry, 2019, 43, 12004-12012.	2.8	42
46	Truncated octahedral LiNi _{0.5} Mn _{1.5} O ₄ with excellent electrochemical properties for lithium-ion batteries prepared by a graphite assisted calcination method. New Journal of Chemistry, 2019, 43, 15396-15404.	2.8	12
47	Synthesis, Waterâ€Removing Method and Influences of Trace Water for LiBF ₄ . ChemistrySelect, 2019, 4, 5853-5859.	1.5	8
48	New insight into the mechanism of LiPO2F2 on the interface of high-voltage cathode LiNi0.5Mn1.5O4 with truncated octahedral structure. Applied Surface Science, 2019, 491, 595-606.	6.1	36
49	Effects of LiBF4 concentration in carbonate-based electrolyte on the stability of high-voltage LiNi0.5Mn1.5O4 cathode. Ionics, 2019, 25, 3623-3631.	2.4	11
50	Enhanced electrochemical properties of LiNi0.6Co0.2Mn0.2O2 cathode material by the diffusional Al2O3 coating layer. Ionics, 2019, 25, 411-419.	2.4	18
51	New Insights for the Abuse Tolerance Behavior of LiMn ₂ O ₄ under High Cutâ€Off Potential Conditions. ChemElectroChem, 2019, 6, 731-740.	3.4	19
52	Optimization of LiFePO4 cathode material based on phosphorus doped graphite network structure for lithium ion batteries. Ionics, 2019, 25, 927-937.	2.4	14
53	Influences of trace water on electrochemical performances for lithium hexafluoro phosphate- and lithium Bis(oxalato)borate-based electrolytes. Electrochimica Acta, 2018, 273, 191-199.	5.2	24
54	Preparation of a truncated octahedron LiNi0.5Mn1.5O4 by a solid-state method with high electrochemical performance. AIP Conference Proceedings, 2018, , .	0.4	0

#	Article	IF	CITATIONS
55	Improved electrochemical properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by Al2O3 coating. AIP Conference Proceedings, 2018, , .	0.4	4
56	Improved electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material synthesized by citric acid assisted sol-gel method for lithium ion batteries. AIP Conference Proceedings, 2018, , .	0.4	3
57	Robust and sulfur-containing ingredient surface film to improve the electrochemical performance of LiDFOB-based high-voltage electrolyte. Electrochimica Acta, 2018, 260, 536-548.	5.2	25
58	Synthesis of LiNi0.5Mn1.5O4 nano/microspheres with adjustable hollow structures for lithium-ion battery. Ionics, 2018, 24, 681-688.	2.4	3
59	Elevated electrochemical property of LiMn2O4 originated from nano-sized Mn3O4. Ionics, 2018, 24, 697-706.	2.4	3
60	Study on High Temperature Film Formation of LiBOB Lithium Salt. IOP Conference Series: Earth and Environmental Science, 2018, 153, 022024.	0.3	1
61	Improvement of Interfacial Stability for LiNi _{0.5} Mn _{1.5} O ₄ Cathode: Insight into the Effect and Mechanism of Additive with Special Structure. Energy Technology, 2018, 6, 2450-2460.	3.8	6
62	Compatibility between lithium difluoro (oxalate) borate-based electrolytes and Li1.2Mn0.54Ni0.13Co0.13O2 cathode for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2018, 823, 688-696.	3.8	22
63	Active Mechanism of the Interphase Film-Forming Process for an Electrolyte Based on a Sulfolane Solvent and a Chelato-Borate Complex. ACS Applied Materials & Interfaces, 2018, 10, 25744-25753.	8.0	21
64	Effects of different precipitants on LiNi0.5Mn1.5O4 for lithium ion batteries prepared by modified co-precipitation method. Ionics, 2017, 23, 2993-2999.	2.4	5
65	Improving Mn tolerance of lithium-ion batteries by using lithium bis(oxalato)borate-based electrolyte. Electrochimica Acta, 2017, 253, 291-301.	5.2	23
66	Study of SEI forming process with Li BOB-DMS/SL electrolyte in first cycle. AIP Conference Proceedings, 2017, , .	0.4	0
67	Mixed Salts of Lithium Difluoro (Oxalate) Borate and Lithium Tetrafluorobotate Electrolyte on Low-Temperature Performance for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A1873-A1880.	2.9	26
68	Pretreatment of Graphite Anodes with Lithium Sulfate to Improve the Cycle Performance of Lithiumâ€Ion Batteries. Energy Technology, 2017, 5, 549-556.	3.8	10
69	Compatibility between Lithium Bis(oxalate)borateâ€Based Electrolytes and a LiFe _{0.6} Mn _{0.4} PO ₄ /C Cathode for Lithiumâ€lon Batteries. Energy Technology, 2017, 5, 406-413.	3.8	6
70	Electrochemical effect and mechanism of adiponitrile additive for high-voltage electrolyte. Electrochimica Acta, 2016, 222, 668-677.	5.2	56
71	Effect of sulfolane and lithium bis(oxalato)borate-based electrolytes on the performance of spinel LiMn2O4 cathodes at 55°C. Ionics, 2016, 22, 797-801.	2.4	8
72	Compatibility of lithium difluoro(sulfato)borate-based electrolyte for LiMn2O4 cathode. Applied Surface Science, 2015, 330, 316-320.	6.1	7

#	Article	IF	CITATIONS
73	Using a lithium difluoro(sulfato)borate additive to improve electrochemical performance of electrolyte based on lithium bis(oxalate)borate for LiNi0.5Mn1.5O4/Li cells. Electrochimica Acta, 2015, 155, 321-326.	5.2	21
74	A low-temperature electrolyte for lithium-ion batteries. Ionics, 2015, 21, 901-907.	2.4	46
75	Electrochemical performances of a novel lithium bis(oxalate)borate-based electrolyte for lithium-ion batteries with LiFePO4 cathodes. Ionics, 2014, 20, 789-794.	2.4	11
76	Electrochemical performance of LiNi0.5Mn1.5O4 doped with la and its compatiblity with new electrolyte system. Russian Journal of Electrochemistry, 2014, 50, 363-369.	0.9	6
77	Studies on Electrochemical Performances of Novel Electrolytes for Wide-Temperature-Range Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 4920-4926.	8.0	61
78	Effect of sulfolane on the morphology and chemical composition of the solid electrolyte interphase layer in lithium bis(oxalato)borateâ€based electrolyte. Surface and Interface Analysis, 2014, 46, 48-55.	1.8	7
79	Mn3O4 nano-sized crystals: Rapid synthesis and extension to preparation of nanosized LiMn2O4 materials. Journal of Chemical Sciences, 2014, 126, 561-567.	1.5	8
80	Nanosized LiNi0.5Mn1.5O4 spinels synthesized by a high-oxidation-state manganese sol–gel method. Ionics, 2013, 19, 1489-1494.	2.4	15
81	Lithium difluoro(sulfato)borate as a salt for the electrolyte of advanced lithium-ion batteries. RSC Advances, 2013, 3, 14942.	3.6	10
82	Electrochemical performances of a novel high-voltage electrolyte based upon sulfolane and Î ³ -butyrolactone. Journal of Power Sources, 2013, 240, 476-485.	7.8	61
83	An improved method for synthesis of lithium difluoro(oxalato)borate and effects of sulfolane on the electrochemical performances of lithium-ion batteries. Electrochimica Acta, 2013, 91, 282-292.	5.2	61
84	Compatibility between LiNi0.5Mn1.5O4 and electrolyte based upon lithium bis(oxalate)borate and sulfolane for high voltage lithium-ion batteries. Electrochimica Acta, 2013, 104, 134-139.	5.2	34
85	Composition analysis of the solid electrolyte interphase film on carbon electrode of lithium-ion battery based on lithium difluoro(oxalate)borate and sulfolane. Journal of Power Sources, 2012, 217, 503-508.	7.8	62
86	Electrochemical performance of electrolytes based upon lithium bis(oxalate)borate and sulfolane/alkyl sulfite mixtures for high temperature lithium-ion batteries. Electrochimica Acta, 2012, 79, 197-201.	5.2	35
87	Effect of sulfolane on the performance of lithium bis(oxalato)borate-based electrolytes for advanced lithium ion batteries. Electrochimica Acta, 2012, 65, 221-227.	5.2	79
88	Electrochemical performances of two kinds of electrolytes based on lithium bis(oxalate)borate and sulfolane for advanced lithium ion batteries. Journal of Power Sources, 2012, 209, 295-300.	7.8	57
89	Ionothermal Synthesis of Cobalt Vanadate Nanoparticles As High-Performance Anode Materials for Lithium-Ion Batteries. Journal of Electronic Materials, 0, , 1.	2.2	3