List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1408359/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Radiation Dose to the Intraprostatic Urethra Correlates Strongly With Urinary Toxicity After Prostate Stereotactic Body Radiation Therapy: A Combined Analysis of 23 Prospective Clinical Trials. International Journal of Radiation Oncology Biology Physics, 2022, 112, 75-82.	0.8	34
2	Genomic Features of Muscle-invasive Bladder Cancer Arising After Prostate Radiotherapy. European Urology, 2022, 81, 466-473.	1.9	12
3	Therapy for Muscle-Invasive Urothelial Carcinoma: Controversies and Dilemmas. Journal of Clinical Oncology, 2022, 40, 1275-1280.	1.6	6
4	<i>RB1</i> loss overrides PARP inhibitor sensitivity driven by <i>RNASEH2B</i> loss in prostate cancer. Science Advances, 2022, 8, eabl9794.	10.3	14
5	Second malignancy probabilities in patients with prostate cancer treated with whole pelvis radiation therapy versus prostate only radiation therapy. Prostate, 2022, 82, 1098-1106.	2.3	2
6	PALB2 or BARD1 loss confers homologous recombination deficiency and PARP inhibitor sensitivity in prostate cancer. Npj Precision Oncology, 2022, 6, .	5.4	9
7	Bladder preservation: Translating discovery for clinical impact in urothelial cancer. Urologic Oncology: Seminars and Original Investigations, 2021, 39, 201-208.	1.6	2
8	Identification of a Synthetic Lethal Relationship between Nucleotide Excision Repair Deficiency and Irofulven Sensitivity in Urothelial Cancer. Clinical Cancer Research, 2021, 27, 2011-2022.	7.0	19
9	Association Between Travel Distance and Use of Postoperative Radiation Therapy Among Men With Organ-Confined Prostate Cancer: Does Geography Influence Treatment Decisions?. Practical Radiation Oncology, 2021, 11, e426-e433.	2.1	3
10	Utilization of multimodality therapy with primary radical prostatectomy versus radiation therapy for Gleason 8–10 prostate cancer. Brachytherapy, 2021, 20, 1-9.	0.5	0
11	Genomic Landscape of Primary and Recurrent Anal Squamous Cell Carcinomas in Relation to HPV Integration, Copy-Number Variation, and DNA Damage Response Genes. Molecular Cancer Research, 2021, 19, 1308-1321.	3.4	8
12	Risk of cardiovascular mortality with androgen deprivation therapy in prostate cancer: A secondary analysis of the Prostate, Lung, Colorectal, and Ovarian (PLCO) Randomized Controlled Trial. Cancer, 2021, 127, 2213-2221.	4.1	9
13	Detection of Molecular Signatures of Homologous Recombination Deficiency in Bladder Cancer. Clinical Cancer Research, 2021, 27, 3734-3743.	7.0	17
14	<i>CDKN2A</i> Alterations and Response to Immunotherapy in Solid Tumors. Clinical Cancer Research, 2021, 27, 4025-4035.	7.0	51
15	Contemporary and Emerging Approaches to Bladder-Preserving Trimodality Therapy for Muscle-Invasive Bladder Cancer. Hematology/Oncology Clinics of North America, 2021, 35, 567-584.	2.2	8
16	Role of Ki-67, MRE11, and PD-L1 as Predictive Biomarkers for Recurrence Pattern in Muscle-invasive Bladder Cancer. Anticancer Research, 2021, 41, 3851-3857.	1.1	1
17	Second malignancy probabilities in prostate cancer patients treated with SBRT and other contemporary radiation techniques. Radiotherapy and Oncology, 2021, 161, 241-250.	0.6	7
18	Clinical characterization of radiation-associated muscle-invasive bladder cancer. Urology, 2021, 154, 208-214.	1.0	3

#	Article	IF	CITATIONS
19	RAF1 amplification drives a subset of bladder tumors and confers sensitivity to MAPK-directed therapeutics. Journal of Clinical Investigation, 2021, 131, .	8.2	17
20	Integrating molecular profiles into clinical frameworks through the Molecular Oncology Almanac to prospectively guide precision oncology. Nature Cancer, 2021, 2, 1102-1112.	13.2	19
21	A model combining clinical and genomic factors to predict response to PD-1/PD-L1 blockade in advanced urothelial carcinoma. British Journal of Cancer, 2020, 122, 555-563.	6.4	59
22	Prevalence of pathogenic germline cancer risk variants in high-risk urothelial carcinoma. Genetics in Medicine, 2020, 22, 709-718.	2.4	44
23	Editorial: Bladder Cancer – A Cinderella Cancer: Advances and Remaining Research Questions. Frontiers in Oncology, 2020, 10, 1749.	2.8	2
24	Impact of percent positive biopsy cores on cancer-specific mortality for patients with high-risk prostate cancer. Urologic Oncology: Seminars and Original Investigations, 2020, 38, 735.e9-735.e15.	1.6	2
25	Three-tiered Subclassification System of High-risk Prostate Cancer in Men Managed With Radical Prostatectomy: Implications for Treatment Decision-making. Urology, 2020, 145, 197-203.	1.0	1
26	Relative Timing of Radiotherapy and Androgen Deprivation for Prostate Cancer and Implications for Treatment During the COVID-19 Pandemic. JAMA Oncology, 2020, 6, 1630.	7.1	25
27	Development and Validation of a Novel TP53 Mutation Signature That Predicts Risk of Metastasis in Primary Prostate Cancer. Clinical Genitourinary Cancer, 2020, 19, 246-254.e5.	1.9	9
28	Genomic Predictors of Good Outcome, Recurrence, or Progression in High-Grade T1 Non–Muscle-Invasive Bladder Cancer. Cancer Research, 2020, 80, 4476-4486.	0.9	49
29	EZH2 has a non-catalytic and PRC2-independent role in stabilizing DDB2 to promote nucleotide excision repair. Oncogene, 2020, 39, 4798-4813.	5.9	29
30	Doublecortin Expression in Prostate Adenocarcinoma and Neuroendocrine Tumors. International Journal of Radiation Oncology Biology Physics, 2020, 108, 936-940.	0.8	3
31	Validation of a subclassification for highâ€risk prostate cancer in a prospective cohort. Cancer, 2020, 126, 2132-2138.	4.1	7
32	Distribution of Molecular Subtypes in Muscle-invasive Bladder Cancer Is Driven by Sex-specific Differences. European Urology Oncology, 2020, 3, 420-423.	5.4	29
33	<i>ATM</i> Loss Confers Greater Sensitivity to ATR Inhibition Than PARP Inhibition in Prostate Cancer. Cancer Research, 2020, 80, 2094-2100.	0.9	71
34	<i>ERCC2</i> Helicase Domain Mutations Confer Nucleotide Excision Repair Deficiency and Drive Cisplatin Sensitivity in Muscle-Invasive Bladder Cancer. Clinical Cancer Research, 2019, 25, 977-988.	7.0	104
35	Genomic Validation of 3-Tiered Clinical Subclassification of High-Risk Prostate Cancer. International Journal of Radiation Oncology Biology Physics, 2019, 105, 621-627.	0.8	10
36	Impact of Immune and Stromal Infiltration on Outcomes Following Bladder-Sparing Trimodality Therapy for Muscle-Invasive Bladder Cancer. European Urology, 2019, 76, 59-68.	1.9	112

#	Article	IF	CITATIONS
37	Use and early mortality outcomes of active surveillance in patients with intermediateâ€risk prostate cancer. Cancer, 2019, 125, 3164-3171.	4.1	35
38	Active Surveillance for Low-Risk Prostate Cancer in Black Patients. New England Journal of Medicine, 2019, 380, 2070-2072.	27.0	42
39	Molecular Characterization of Neuroendocrine-like Bladder Cancer. Clinical Cancer Research, 2019, 25, 3908-3920.	7.0	71
40	Reply from Authors re: Ananya Choudhury, Peter J. Hoskin. Predictive Biomarkers for Muscle-invasive Bladder Cancer: The Search for the Holy Grail Continues. Eur Urol 2019;76:69–70. European Urology, 2019, 76, 71-72.	1.9	2
41	High IDO1 Expression Is Associated with Poor Outcome in Patients with Anal Cancer Treated with Definitive Chemoradiotherapy. Oncologist, 2019, 24, e275-e283.	3.7	18
42	Mutational Analysis of 472 Urothelial Carcinoma Across Grades and Anatomic Sites. Clinical Cancer Research, 2019, 25, 2458-2470.	7.0	102
43	A comparative analysis of overall survival between high-dose-rate and low-dose-rate brachytherapy boosts for unfavorable-risk prostate cancer. Brachytherapy, 2019, 18, 186-191.	0.5	18
44	Androgen Deprivation Therapy and Overall Survival for Gleason 8 Versus Gleason 9–10 Prostate Cancer. European Urology, 2019, 75, 35-41.	1.9	18
45	Functional profiling of nucleotide Excision repair in breast cancer. DNA Repair, 2019, 82, 102697.	2.8	10
46	Practice Patterns and Outcomes Among Patients With N0M0 Prostate Cancer and a Very High Prostate-Specific Antigen Level. Journal of the National Comprehensive Cancer Network: JNCCN, 2019, 17, 941-948.	4.9	0
47	Clinical and Genomic Characterization of Low–Prostate-specific Antigen, High-grade Prostate Cancer. European Urology, 2018, 74, 146-154.	1.9	72
48	Brachytherapy monotherapy may be sufficient for a subset of patients with unfavorable intermediate risk prostate cancer. Urologic Oncology: Seminars and Original Investigations, 2018, 36, 157.e15-157.e20.	1.6	6
49	From checkpoint to checkpoint: DNA damage ATR/Chk1 checkpoint signalling elicits PD-L1 immune checkpoint activation. British Journal of Cancer, 2018, 118, 933-935.	6.4	34
50	Travel Distance as a Barrier to Receipt of Adjuvant Radiation Therapy After Radical Prostatectomy. American Journal of Clinical Oncology: Cancer Clinical Trials, 2018, 41, 953-959.	1.3	14
51	Pathologic Outcomes of Cleason 6 Favorable Intermediate-Risk Prostate Cancer Treated With Radical Prostatectomy: Implications for Active Surveillance. Clinical Genitourinary Cancer, 2018, 16, 226-234.	1.9	14
52	Applying Precision Oncology Principles in Radiation Oncology. JCO Precision Oncology, 2018, 2, 1-23.	3.0	12
53	DNA Repair Deficiency and Immunotherapy Response. Journal of Clinical Oncology, 2018, 36, 1710-1713.	1.6	31
54	Impact of a dedicated palliative radiation oncology service on the use of single fraction and hypofractionated radiation therapy among patients with bone metastases. Annals of Palliative Medicine, 2018, 7, 186-191.	1.2	8

#	Article	IF	CITATIONS
55	Assessing the Training and Research Environment for Genomics, Bioinformatics, and Immunology in Radiation Oncology. JCO Clinical Cancer Informatics, 2018, 2, 1-9.	2.1	7
56	Enrichment of FGFR3-TACC3 Fusions in Patients With Bladder Cancer Who Are Young, Asian, or Have Never Smoked. JCO Precision Oncology, 2018, 2, 1-11.	3.0	2
57	Molecular biomarkers in bladder preservation therapy for muscle-invasive bladder cancer. Lancet Oncology, The, 2018, 19, e683-e695.	10.7	74
58	Quantification of somatic mutation flow across individual cell division events by lineage sequencing. Genome Research, 2018, 28, 1901-1918.	5.5	24
59	Toward Biomarker-Informed Trimodality Therapy (TMT) Approaches for Muscle-Invasive Bladder Cancer. International Journal of Radiation Oncology Biology Physics, 2018, 102, 1417-1419.	0.8	0
60	Post-Prostatectomy Radiation Therapy: Balancing Disease Control and Functional Outcomes. Journal of Urology, 2017, 197, 541-542.	0.4	0
61	DNA Damage and Repair Biomarkers of Immunotherapy Response. Cancer Discovery, 2017, 7, 675-693.	9.4	519
62	Analysis of patient outcomes following proton radiation therapy for retinoblastoma. Advances in Radiation Oncology, 2017, 2, 44-52.	1.2	12
63	Receipt of definitive therapy in elderly patients with unfavorableâ€risk prostate cancer. Cancer, 2017, 123, 4832-4840.	4.1	20
64	A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer. Nature Genetics, 2017, 49, 1476-1486.	21.4	427
65	Analysis of somatic microsatellite indels identifies driver events in human tumors. Nature Biotechnology, 2017, 35, 951-959.	17.5	106
66	Lack of Benefit From the Addition of External Beam Radiation Therapy to Brachytherapy for Intermediate- and High-risk Prostate Cancer. International Journal of Radiation Oncology Biology Physics, 2017, 99, 904-911.	0.8	6
67	Genomic Evolution after Chemoradiotherapy in Anal Squamous Cell Carcinoma. Clinical Cancer Research, 2017, 23, 3214-3222.	7.0	44
68	DNA Repair Pathway Alterations in Bladder Cancer. Cancers, 2017, 9, 28.	3.7	39
69	Somatic ERCC2 mutations are associated with a distinct genomic signature in urothelial tumors. Nature Genetics, 2016, 48, 600-606.	21.4	352
70	A Unique Subset of Epithelial Ovarian Cancers with Platinum Sensitivity and PARP Inhibitor Resistance. Cancer Research, 2015, 75, 628-634.	0.9	104
71	Nucleotide excision repair (NER) alterations as evolving biomarkers and therapeutic targets in epithelial cancers. Oncoscience, 2015, 2, 942-943.	2.2	14
72	Somatic <i>ERCC2</i> Mutations Correlate with Cisplatin Sensitivity in Muscle-Invasive Urothelial Carcinoma. Cancer Discovery, 2014, 4, 1140-1153.	9.4	506

#	Article	IF	CITATIONS
73	Second nonocular tumors among survivors of retinoblastoma treated with contemporary photon and proton radiotherapy. Cancer, 2014, 120, 126-133.	4.1	141
74	Dosimetric Consequences of Interobserver Variability in Delineating the Organs at Risk in Gynecologic Interstitial Brachytherapy. International Journal of Radiation Oncology Biology Physics, 2014, 89, 674-681.	0.8	16
75	Proton Radiation Therapy for the Treatment ofÂRetinoblastoma. International Journal of Radiation Oncology Biology Physics, 2014, 90, 863-869.	0.8	46
76	Crosstalk between the nucleotide excision repair and Fanconi anemia/BRCA pathways. DNA Repair, 2014, 19, 130-134.	2.8	27
77	Hypofractionation in the era of modulated radiotherapy (RT). Breast, 2013, 22, S129-S136.	2.2	7
78	Clinical Controversies: Proton Therapy for Prostate Cancer. Seminars in Radiation Oncology, 2013, 23, 109-114.	2.2	18
79	Arginine as a General Acid Catalyst in Serine Recombinase-mediated DNA Cleavage. Journal of Biological Chemistry, 2013, 288, 29206-29214.	3.4	28
80	Performance and quality of life outcomes for T4 laryngeal cancer patients treated with induction chemotherapy followed by chemoradiotherapy. Oral Oncology, 2012, 48, 1025-1030.	1.5	13
81	Factors Associated With Long-term Speech and Swallowing Outcomes After Chemoradiotherapy for Locoregionally Advanced Head and Neck Cancer. JAMA Otolaryngology, 2010, 136, 1226.	1.2	17
82	Orchestrating serine resolvases. Biochemical Society Transactions, 2010, 38, 384-387.	3.4	14
83	Sin Resolvase Catalytic Activity and Oligomerization State are Tightly Coupled. Journal of Molecular Biology, 2010, 404, 16-33.	4.2	16
84	Regulatory mutations in Sin recombinase support a structureâ€based model of the synaptosome. Molecular Microbiology, 2009, 74, 282-298.	2.5	28
85	Architecture of a Serine Recombinase-DNA Regulatory Complex. Molecular Cell, 2008, 30, 145-155.	9.7	55
86	Shaping the Borrelia burgdorferi genome: crystal structure and binding properties of the DNA-bending protein Hbb. Molecular Microbiology, 2007, 63, 1319-1330.	2.5	68