Ognen Pop-Georgievski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1407970/publications.pdf

Version: 2024-02-01

66 papers 2,150 citations

218677 26 h-index 243625 44 g-index

68 all docs

68 docs citations

68 times ranked 3260 citing authors

#	Article	IF	CITATIONS
1	Determination of amino groups on functionalized graphene oxide for polyurethane nanomaterials: XPS quantitation vs. functional speciation. RSC Advances, 2017, 7, 12464-12473.	3.6	271
2	Controlled Cell Adhesion on Poly(dopamine) Interfaces Photopatterned with Nonâ€Fouling Brushes. Advanced Materials, 2013, 25, 6123-6127.	21.0	180
3	Poly(ethylene oxide) Layers Grafted to Dopamine-melanin Anchoring Layer: Stability and Resistance to Protein Adsorption. Biomacromolecules, 2011, 12, 3232-3242.	5.4	98
4	Nonfouling Poly(ethylene oxide) Layers End-Tethered to Polydopamine. Langmuir, 2012, 28, 14273-14283.	3.5	85
5	Biomimetic non-fouling surfaces: extending the concepts. Journal of Materials Chemistry B, 2013, 1, 2859.	5.8	76
6	Antifouling Polymer Brushes Displaying Antithrombogenic Surface Properties. Biomacromolecules, 2016, 17, 1179-1185.	5.4	68
7	Hepatitis B plasmonic biosensor for the analysis of clinical serum samples. Biosensors and Bioelectronics, 2016, 85, 272-279.	10.1	63
8	Synthesis of non-fouling poly[N-(2-hydroxypropyl)methacrylamide] brushes by photoinduced SET-LRP. Polymer Chemistry, 2015, 6, 4210-4220.	3.9	59
9	Lead Halide Residue as a Source of Light-Induced Reversible Defects in Hybrid Perovskite Layers and Solar Cells. ACS Energy Letters, 2019, 4, 3011-3017.	17.4	57
10	Silk fibroin gelation via non-solvent induced phase separation. Biomaterials Science, 2016, 4, 460-473.	5.4	55
11	Controlled/Living Surfaceâ€Initiated ATRP of Antifouling Polymer Brushes from Gold in PBS and Blood Sera as a Model Study for Polymer Modifications in Complex Biological Media. Macromolecular Bioscience, 2012, 12, 525-532.	4.1	52
12	Thermalâ€Induced Transformation of Polydopamine Structures: An Efficient Route for the Stabilization of the Polydopamine Surfaces. Macromolecular Chemistry and Physics, 2013, 214, 499-507.	2.2	52
13	Exploiting end group functionalization for the design of antifouling bioactive brushes. Polymer Chemistry, 2014, 5, 4124-4131.	3.9	51
14	Surface Grafting via Photoâ€Induced Copperâ€Mediated Radical Polymerization at Extremely Low Catalyst Concentrations. Macromolecular Rapid Communications, 2015, 36, 1681-1686.	3.9	50
15	Ultralow-Fouling Behavior of Biorecognition Coatings Based on Carboxy-Functional Brushes of Zwitterionic Homo- and Copolymers in Blood Plasma: Functionalization Matters. Analytical Chemistry, 2017, 89, 3524-3531.	6.5	47
16	Copolymer Brush-Based Ultralow-Fouling Biorecognition Surface Platform for Food Safety. Analytical Chemistry, 2016, 88, 10533-10539.	6.5	43
17	"Click & Seed―Approach to the Biomimetic Modification of Material Surfaces. Macromolecular Bioscience, 2012, 12, 1232-1242.	4.1	42
18	Plasmonic Hepatitis B Biosensor for the Analysis of Clinical Saliva. Analytical Chemistry, 2017, 89, 2972-2977.	6.5	42

#	Article	IF	Citations
19	Study of ZnO nanorods grown under UV irradiation. Applied Surface Science, 2019, 472, 105-111.	6.1	41
20	Self-assembled anchor layers/polysaccharide coatings on titanium surfaces: a study of functionalization and stability. Beilstein Journal of Nanotechnology, 2015, 6, 617-631.	2.8	37
21	Grafting of functional methacrylate polymer brushes by photoinduced SET-LRP. Polymer Chemistry, 2016, 7, 6934-6945.	3.9	34
22	A facile avenue to conductive polymer brushes via cyclopentadiene–maleimide Diels–Alder ligation. Chemical Communications, 2013, 49, 8623.	4.1	33
23	Polydopamine-modified nanocrystalline diamond thin films as a platform for bio-sensing applications. Thin Solid Films, 2013, 543, 180-186.	1.8	32
24	Synthesis of zinc oxide nanostructures and comparison of their crystal quality. Applied Surface Science, 2018, 461, 190-195.	6.1	29
25	Poly(2-oxazoline)s One-Pot Polymerization and Surface Coating: From Synthesis to Antifouling Properties Out-Performing Poly(ethylene oxide). Biomacromolecules, 2019, 20, 3453-3463.	5.4	29
26	Versatile Bioconjugation Strategies of PEG-Modified Upconversion Nanoparticles for Bioanalytical Applications. Biomacromolecules, 2020, 21, 4502-4513.	5.4	28
27	"Clickable―and Antifouling Block Copolymer Brushes as a Versatile Platform for Peptide‧pecific Cell Attachment. Macromolecular Bioscience, 2020, 20, e1900354.	4.1	27
28	Influence of ionic liquid-modified LDH on microwave-assisted polymerization of $\hat{l}\mu$ -caprolactone. Polymer, 2016, 100, 86-94.	3.8	26
29	Photoâ€Induced Functionalization of Spherical and Planar Surfaces via Caged Thioaldehyde Endâ€Functional Polymers. Advanced Functional Materials, 2014, 24, 5649-5661.	14.9	25
30	Quantitative determination of acidic groups in functionalized graphene by direct titration. Reactive and Functional Polymers, 2016, 103, 44-53.	4.1	24
31	Antifouling Peptide Dendrimer Surface of Monodisperse Magnetic Poly(glycidyl methacrylate) Microspheres. Macromolecules, 2017, 50, 1302-1311.	4.8	24
32	Antibacterial Silver-Conjugated Magnetic Nanoparticles: Design, Synthesis and Bactericidal Effect. Pharmaceutical Research, 2019, 36, 147.	3.5	24
33	Bioengineering a pre-vascularized pouch for subsequent islet transplantation using VEGF-loaded polylactide capsules. Biomaterials Science, 2020, 8, 631-647.	5.4	23
34	Study of the surface properties of ZnO nanocolumns used for thin-film solar cells. Beilstein Journal of Nanotechnology, 2017, 8, 446-451.	2.8	22
35	Designing Molecular Printboards: A Photolithographic Platform for Recodable Surfaces. Chemistry - A European Journal, 2015, 21, 13186-13190.	3.3	21
36	Nonâ€Fouling Biodegradable Poly(ϵâ€caprolactone) Nanofibers for Tissue Engineering. Macromolecular Bioscience, 2016, 16, 83-94.	4.1	21

#	Article	IF	Citations
37	Cerium Oxide-Decorated Î ³ -Fe2O3 Nanoparticles: Design, Synthesis and in vivo Effects on Parameters of Oxidative Stress. Frontiers in Chemistry, 2020, 8, 682.	3.6	19
38	Grafting density and antifouling properties of poly[<i>N</i> -(2-hydroxypropyl) methacrylamide] brushes prepared by "grafting to―and "grafting from― Polymer Chemistry, 2022, 13, 3815-3826.	3.9	17
39	Functionalized porous silica& maghemite core-shell nanoparticles for applications in medicine: design, synthesis, and immunotoxicity. Croatian Medical Journal, 2016, 57, 165-178.	0.7	16
40	Conformation in Ultrathin Polymer Brush Coatings Resolved by Infrared Nanoscopy. Analytical Chemistry, 2020, 92, 4716-4720.	6.5	16
41	Unraveling the influence of substrate on the growth rate, morphology and covalent structure of surface adherent polydopamine films. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111897.	5.0	16
42	Antifouling fluoropolymer-coated nanomaterials for ¹⁹ F MRI. Chemical Communications, 2021, 57, 4718-4721.	4.1	15
43	Antifouling Microparticles To Scavenge Lipopolysaccharide from Human Blood Plasma. Biomacromolecules, 2019, 20, 959-968.	5.4	13
44	Polymer brushes based on PLLA- $\langle i \rangle$ b $\langle i \rangle$ -PEO colloids for the preparation of protein resistant PLA surfaces. Biomaterials Science, 2017, 5, 1130-1143.	5.4	12
45	Surface Design of Antifouling Vascular Constructs Bearing Biofunctional Peptides for Tissue Regeneration Applications. International Journal of Molecular Sciences, 2020, 21, 6800.	4.1	12
46	Direct delamination of graphite ore into defect-free graphene using a biphasic solvent system under pressurized ultrasound. RSC Advances, 2016, 6, 6008-6015.	3.6	11
47	Carbon nanospecies affecting amyloid formation. RSC Advances, 2017, 7, 53887-53898.	3.6	11
48	Direct and Indirect Biomimetic Peptide Modification of Alginate: Efficiency, Side Reactions, and Cell Response. International Journal of Molecular Sciences, 2021, 22, 5731.	4.1	11
49	Partially sulfonated polyaniline: conductivity and spectroscopic study. Chemical Papers, 2017, 71, 329-338.	2.2	9
50	Ultrathin Monomolecular Films and Robust Assemblies Based on Cyclic Catechols. Langmuir, 2017, 33, 670-679.	3.5	9
51	Impact of Bioactive Peptide Motifs on Molecular Structure, Charging, and Nonfouling Properties of Poly(ethylene oxide) Brushes. Langmuir, 2018, 34, 6010-6020.	3.5	9
52	Protein corona of SiO2 nanoparticles with grafted thermoresponsive copolymers: Calorimetric insights on factors affecting entropy vs. enthalpy-driven associations. Applied Surface Science, 2022, 601, 154201.	6.1	9
53	Thiolated poly(2-hydroxyethyl methacrylate) hydrogels as a degradable biocompatible scaffold for tissue engineering. Materials Science and Engineering C, 2021, 131, 112500.	7.3	8
54	Cell adhesion and growth enabled by biomimetic oligopeptide modification of a polydopamine-poly(ethylene oxide) protein repulsive surface. Journal of Materials Science: Materials in Medicine, 2015, 26, 253.	3.6	7

#	Article	IF	Citations
55	Aqueous-Based Functionalizations of Titanate Nanotubes: A Straightforward Route to High-Performance Epoxy Composites with Interfacially Bonded Nanofillers. Macromolecules, 2018, 51, 5989-6002.	4.8	6
56	Potentiometric Performance of Ion-Selective Electrodes Based on Polyaniline and Chelating Agents: Detection of Fe2+ or Fe3+ Ions. Biosensors, 2022, 12, 446.	4.7	6
57	Zwitterionic Functionalizable Scaffolds with Gyroid Pore Architecture for Tissue Engineering. Macromolecular Bioscience, 2019, 19, e1800403.	4.1	5
58	Complexation of CXCL12, FGF-2 and VEGF with Heparin Modulates the Protein Release from Alginate Microbeads. International Journal of Molecular Sciences, 2021, 22, 11666.	4.1	5
59	Tungsten (VI) based "molecular puzzle―photoluminescent nanoparticles easily covered with biocompatible natural polysaccharides via direct chelation. Journal of Colloid and Interface Science, 2018, 512, 308-317.	9.4	4
60	Complement Activation Dramatically Accelerates Blood Plasma Fouling On Antifouling Poly(2â€hydroxyethyl methacrylate) Brush Surfaces. Macromolecular Bioscience, 2022, 22, e2100460.	4.1	4
61	Poly(4-Styrenesulfonic Acid- <i>co</i> -maleic Anhydride)-Coated NaGdF ₄ :Yb,Tb,Nd Nanoparticles with Luminescence and Magnetic Properties for Imaging of Pancreatic Islets and β-Cells. ACS Applied Materials & Interfaces, 2022, , .	8.0	3
62	Adjustable self-assembly in polystyrene-block-poly(4-vinylpyridine) dip-coated thin films. Polymer, 2019, 177, 35-42.	3.8	2
63	Nano-Colloid Printing of Functionalized PLA-b-PEO Copolymers: Tailoring the Surface Pattern of Adhesive Motif and its Effect on Cell Attachment. Physiological Research, 2015, 64, S61-S73.	0.9	2
64	Macroporous nitrogen-containing carbon for electrochemical capacitors. Electrochimica Acta, 2022, 418, 140370.	5.2	2
65	Macromol. Rapid Commun. 18/2015. Macromolecular Rapid Communications, 2015, 36, 1696-1696.	3.9	0
66	Non-Fouling Biodegradable Poly(Ϊμ-caprolactone) Nanofi bers for Tissue Engineering. Macromolecular Bioscience, 2016, 16, 82-82.	4.1	0