
James R Sowers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1407866/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diabetic Cardiomyopathy. Circulation Research, 2018, 122, 624-638.	4.5	1,076
2	Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nature Reviews Endocrinology, 2016, 12, 144-153.	9.6	597
3	Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia, 2018, 61, 21-28.	6.3	501
4	Obesity as a cardiovascular risk factor. American Journal of Medicine, 2003, 115, 37-41.	1.5	447
5	Fibroblast Growth Factor 23 and Hypophosphatemia: A Case of Hypophosphatemia along the Rickets-Osteomalacia Spectrum. CardioRenal Medicine, 2017, 7, 60-65.	1.9	443
6	The pathophysiology of hypertension in patients with obesity. Nature Reviews Endocrinology, 2014, 10, 364-376.	9.6	376
7	Targeting autophagy in obesity: from pathophysiology to management. Nature Reviews Endocrinology, 2018, 14, 356-376.	9.6	244
8	Obesity, Adipose Tissue and Vascular Dysfunction. Circulation Research, 2021, 128, 951-968.	4.5	243
9	Endothelial cell senescence in aging-related vascular dysfunction. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1802-1809.	3.8	232
10	Type 2 Diabetes Mellitus and Hypertension. Endocrinology and Metabolism Clinics of North America, 2014, 43, 103-122.	3.2	231
11	Insulin resistance, cardiovascular stiffening and cardiovascular disease. Metabolism: Clinical and Experimental, 2021, 119, 154766.	3.4	231
12	Thyroid and the Heart. American Journal of Medicine, 2014, 127, 691-698.	1.5	217
13	Sodium glucose transporter 2 (SGLT2) inhibition with empagliflozin improves cardiac diastolic function in a female rodent model of diabetes. Cardiovascular Diabetology, 2017, 16, 9.	6.8	205
14	Covid-19 and Disparities in Nutrition and Obesity. New England Journal of Medicine, 2020, 383, e69.	27.0	180
15	Endothelial Mineralocorticoid Receptor Mediates Diet-Induced Aortic Stiffness in Females. Circulation Research, 2016, 118, 935-943.	4.5	142
16	Diabetes Mellitus and Vascular Disease. Hypertension, 2013, 61, 943-947.	2.7	136
17	Commentary: COVID-19 in patients with diabetes. Metabolism: Clinical and Experimental, 2020, 107, 154217.	3.4	136
18	Low-Dose Mineralocorticoid Receptor Blockade Prevents Western Diet–Induced Arterial Stiffening in Female Mice. Hypertension, 2015, 66, 99-107.	2.7	125

#	Article	IF	CITATIONS
19	The Renin Angiotensin Aldosterone System in Obesity and Hypertension. Medical Clinics of North America, 2017, 101, 129-137.	2.5	118
20	Uric Acid Promotes Left Ventricular Diastolic Dysfunction in Mice Fed a Western Diet. Hypertension, 2015, 65, 531-539.	2.7	114
21	Cellular mechanisms underlying obesity-induced arterial stiffness. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 314, R387-R398.	1.8	112
22	Glycemic control by the SGLT2 inhibitor empagliflozin decreases aortic stiffness, renal resistivity index and kidney injury. Cardiovascular Diabetology, 2018, 17, 108.	6.8	112
23	Role of Renin-Angiotensin-Aldosterone System Activation in Promoting Cardiovascular Fibrosis and Stiffness. Hypertension, 2018, 72, 537-548.	2.7	112
24	Endothelial Mineralocorticoid Receptor Deletion Prevents Diet-Induced Cardiac Diastolic Dysfunction in Females. Hypertension, 2015, 66, 1159-1167.	2.7	111
25	Vascular stiffness in insulin resistance and obesity. Frontiers in Physiology, 2015, 6, 231.	2.8	100
26	Autophagy as an emerging target in cardiorenal metabolic disease: From pathophysiology to management. , 2018, 191, 1-22.		100
27	Overnutrition, mTOR signaling, and cardiovascular diseases. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R1198-R1206.	1.8	96
28	Obesity and kidney disease: from population toÂbasic science and the search for new therapeuticÂtargets. Kidney International, 2017, 92, 313-323.	5.2	93
29	Dipeptidyl peptidase inhibition prevents diastolic dysfunction and reduces myocardial fibrosis in a Mouse model of Western diet induced obesity. Metabolism: Clinical and Experimental, 2014, 63, 1000-1011.	3.4	86
30	Hypertension in Diabetes: An Update of Basic Mechanisms and Clinical Disease. Hypertension, 2021, 78, 1197-1205.	2.7	85
31	Mineralocorticoid Receptor Antagonism Treats Obesity-Associated Cardiac Diastolic Dysfunction. Hypertension, 2015, 65, 1082-1088.	2.7	84
32	Metabolic Stress, Autophagy, and Cardiovascular Aging: from Pathophysiology to Therapeutics. Trends in Endocrinology and Metabolism, 2018, 29, 699-711.	7.1	83
33	Treatment of Hypertension in Patients With Diabetes. Archives of Internal Medicine, 2004, 164, 1850.	3.8	74
34	Dipeptidyl Peptidase-4 Inhibition Ameliorates Western Diet–Induced Hepatic Steatosis and Insulin Resistance Through Hepatic Lipid Remodeling and Modulation of Hepatic Mitochondrial Function. Diabetes, 2015, 64, 1988-2001.	0.6	69
35	Insulin Resistance in Kidney Disease: Is There a Distinct Role Separate from That of Diabetes or Obesity. CardioRenal Medicine, 2018, 8, 41-49.	1.9	65
36	Mineralocorticoid receptor blockade prevents Western diet-induced diastolic dysfunction in female mice. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H1126-H1135.	3.2	64

#	Article	IF	CITATIONS
37	Endocrine Functions of Adipose Tissue: Focus on Adiponectin. Clinical Cornerstone, 2008, 9, 32-40.	0.7	62
38	Epithelial Sodium Channel in Aldosterone-Induced Endothelium Stiffness and Aortic Dysfunction. Hypertension, 2018, 72, 731-738.	2.7	61
39	Dipeptidyl peptidase-4 (DPP-4) inhibition with linagliptin reduces western diet-induced myocardial TRAF3IP2 expression, inflammation and fibrosis in female mice. Cardiovascular Diabetology, 2017, 16, 61.	6.8	58
40	Diabetes and Cardiovascular Disease: an Update. Current Diabetes Reports, 2019, 19, 161.	4.2	53
41	Regional variation in arterial stiffening and dysfunction in Western diet-induced obesity. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H574-H582.	3.2	51
42	Autophagy: A housekeeper in cardiorenal metabolic health and disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 219-224.	3.8	49
43	Uric acid promotes vascular stiffness, maladaptive inflammatory responses and proteinuria in western diet fed mice. Metabolism: Clinical and Experimental, 2017, 74, 32-40.	3.4	49
44	The role of mineralocorticoid receptor signaling in the cross-talk between adipose tissue and the vascular wall. Cardiovascular Research, 2017, 113, 1055-1063.	3.8	47
45	Aerobic exercise training in the treatment of nonâ€alcoholic fatty liver disease related fibrosis. Journal of Physiology, 2016, 594, 5271-5284.	2.9	45
46	Diet-Induced Obesity Promotes Kidney Endothelial Stiffening and Fibrosis Dependent on the Endothelial Mineralocorticoid Receptor. Hypertension, 2019, 73, 849-858.	2.7	41
47	Epithelial sodium channels in endothelial cells mediate diet-induced endothelium stiffness and impaired vascular relaxation in obese female mice. Metabolism: Clinical and Experimental, 2019, 99, 57-66.	3.4	40
48	Psychological Distress and Hypertension: Results from the National Health Interview Survey for 2004-2013. CardioRenal Medicine, 2016, 6, 198-208.	1.9	39
49	Amiloride Improves Endothelial Function and Reduces Vascular Stiffness in Female Mice Fed a Western Diet. Frontiers in Physiology, 2017, 8, 456.	2.8	37
50	Dipeptidyl peptidase-4 inhibition with linagliptin prevents western diet-induced vascular abnormalities in female mice. Cardiovascular Diabetology, 2016, 15, 94.	6.8	36
51	Endothelial Dysfunction Potentially Interacts With Impaired Glucose Metabolism to Increase Cardiovascular Risk. Hypertension, 2014, 64, 1192-1193.	2.7	35
52	Enhanced endothelium epithelial sodium channel signaling prompts left ventricular diastolic dysfunction in obese female mice. Metabolism: Clinical and Experimental, 2018, 78, 69-79.	3.4	35
53	Angiotensin receptor blocker/diuretic combination preserves insulin responses in obese hypertensives. Journal of Hypertension, 2010, 28, 1761-1769.	0.5	34
54	Basic science. Journal of the American Society of Hypertension, 2014, 8, 604-606.	2.3	32

#	Article	IF	CITATIONS
55	Daily exercise prevents diastolic dysfunction and oxidative stress in a female mouse model of western diet induced obesity by maintaining cardiac heme oxygenase-1 levels. Metabolism: Clinical and Experimental, 2017, 66, 14-22.	3.4	32
56	Commentary: COVID-19 and obesity pandemics converge into a syndemic requiring urgent and multidisciplinary action. Metabolism: Clinical and Experimental, 2021, 114, 154408.	3.4	28
57	Contribution of Maladaptive Adipose Tissue Expansion to Development of Cardiovascular Disease. , 2016, 7, 253-262.		23
58	Xanthine oxidase inhibition protects against Western diet-induced aortic stiffness and impaired vasorelaxation in female mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 313, R67-R77.	1.8	23
59	Caveolin-1 in Cardiovascular Disease: A Double-Edged Sword. Diabetes, 2015, 64, 3645-3647.	0.6	22
60	Endothelium-Derived Hyperpolarizing Factors: A Potential Therapeutic Target for Vascular Dysfunction in Obesity and Insulin Resistance. Diabetes, 2016, 65, 2118-2120.	0.6	20
61	Mineralocorticoid receptors in the pathogenesis of insulin resistance and related disorders: from basic studies to clinical disease. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R276-R286.	1.8	20
62	Cell death regulation by MAMs: from molecular mechanisms to therapeutic implications in cardiovascular diseases. Cell Death and Disease, 2022, 13, .	6.3	20
63	Insulin Resistance and Skeletal Muscle Vasculature: Significance, Assessment and Therapeutic Modulators. CardioRenal Medicine, 2014, 4, 244-256.	1.9	19
64	Application of a Novel Curcumin Analog in the Management of Diabetic Cardiomyopathy. Diabetes, 2014, 63, 3166-3168.	0.6	18
65	Sacubitril/valsartan inhibits obesity-associated diastolic dysfunction through suppression of ventricular-vascular stiffness. Cardiovascular Diabetology, 2021, 20, 80.	6.8	18
66	Role of mineralocorticoid receptor activation in cardiac diastolic dysfunction. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2012-2018.	3.8	17
67	Targeting endothelial exosomes for the prevention of cardiovascular disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165833.	3.8	17
68	Statins and New-Onset Diabetes in Cardiovascular and Kidney Disease Cohorts: A Meta-Analysis. CardioRenal Medicine, 2018, 8, 105-112.	1.9	16
69	Diabetes and Hypertension: Clinical Update. American Journal of Hypertension, 2018, 31, 515-521.	2.0	16
70	Role of Perivascular Adipose Tissue on Vascular Reactive Oxygen Species in Type 2 Diabetes: A Give-and-Take Relationship. Diabetes, 2015, 64, 1904-1906.	0.6	15
71	Potential Role of Antihypertensive Medications in Preventing Excessive Arterial Stiffening. Current Hypertension Reports, 2018, 20, 76.	3.5	15
72	Metabolic Derangements in the Insulinâ€Resistant Heart. Journal of the Cardiometabolic Syndrome, 2006, 1, 102-106.	1.7	13

6

#	Article	IF	CITATIONS
73	Initial Combination Therapy Compared With Monotherapy in Diabetic Hypertensive Patients. Journal of Clinical Hypertension, 2008, 10, 668-676.	2.0	13
74	Endothelial sodium channel activation promotes cardiac stiffness and diastolic dysfunction in Western diet fed female mice. Metabolism: Clinical and Experimental, 2020, 109, 154223.	3.4	13
75	Glucagon-Like Peptide 1 Receptor Activation and Platelet Function: Beyond Glycemic Control. Diabetes, 2016, 65, 1487-1489.	0.6	12
76	Increased Fibro-Adipogenic Progenitors and Intramyocellular Lipid Accumulation in Obesity-Related Skeletal Muscle Dysfunction. Diabetes, 2019, 68, 18-20.	0.6	12
77	Role of TRIB3 in Diabetic and Overnutrition-Induced Atherosclerosis. Diabetes, 2012, 61, 265-266.	0.6	11
78	Salt Loading Promotes Kidney Injury via Fibrosis in Young Female Ren2 Rats. CardioRenal Medicine, 2014, 4, 43-52.	1.9	10
79	Two-Dimensional Zymography Differentiates Gelatinase Isoforms in Stimulated Microglial Cells and in Brain Tissues of Acute Brain Injuries. PLoS ONE, 2015, 10, e0123852.	2.5	10
80	Interaction of Adipogenesis and Angiogenesis in Dietary-Induced Obesity. Diabetes, 2015, 64, 2326-2328.	0.6	10
81	Absence of Endothelial ERα Results in Arterial Remodeling and Decreased Stiffness in Western Diet–Fed Male Mice. Endocrinology, 2017, 158, 1875-1885.	2.8	10
82	Mineralocorticoid Receptors: An Appealing Target to Treat Coronary Microvascular Dysfunction in Diabetes: Figure 1. Diabetes, 2015, 64, 3-5.	0.6	9
83	DPP4 inhibition mitigates ANG II-mediated kidney immune activation and injury in male mice. American Journal of Physiology - Renal Physiology, 2021, 320, F505-F517.	2.7	7
84	Endothelial sodium channel activation mediates DOCA-salt-induced endothelial cell and arterial stiffening. Metabolism: Clinical and Experimental, 2022, 130, 155165.	3.4	7
85	Antihypertensive Therapy in the Geriatric Patient I: A Review of the Role of Calcium Channel Blockers. Journal of Clinical Pharmacology, 1989, 29, 193-200.	2.0	6
86	The Journal of the CardioMetabolic Syndrome : Why It Is Needed. Journal of the Cardiometabolic Syndrome, 2006, 1, 5-5.	1.7	6
87	Ghrelin: A New Incretin Enhancer Therapy?. Diabetes, 2015, 64, 1500-1502.	0.6	6
88	Utility of obesity and metabolic dyslipidemia (a nonâ€insulin based determinate of the metabolic) Tj ETQq0 0 0 r 2019, 21, 1071-1074.	gBT /Overl 2.0	ock 10 Tf 50 6
89	Role of intestinal Na(+)/H(+) exchanger inhibition in the prevention of cardiovascular and kidney disease. Annals of Translational Medicine, 2015, 3, 91.	1.7	6

Targeting mineralocorticoid receptors in diet-induced hepatic steatosis and insulin resistance.90American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2022, 322,1.8R253-R262.1.8

#	Article	IF	CITATIONS
91	Inhibition of sphingomyelinase attenuates diet – Induced increases in aortic stiffness. Journal of Molecular and Cellular Cardiology, 2022, 167, 32-39.	1.9	6
92	Blood Pressure–Related Outcomes in a Diabetic Population. Hypertension, 2016, 68, 34-35.	2.7	5
93	Maternal Exposure to High Fructose and Offspring Health. Hypertension, 2019, 74, 499-501.	2.7	5
94	Mineralocorticoid antagonists and ENaC inhibitors in hyperaldosteronism. Journal of Clinical Hypertension, 2019, 21, 929-931.	2.0	5
95	Cervical neuroendocrine tumor in a young female with Lynch Syndrome. Neuroendocrinology Letters, 2014, 35, 89-94.	0.2	5
96	The VASP Road to NAFLD: A Macrophage Detour. Diabetes, 2015, 64, 2711-2713.	0.6	4
97	A Possible New Multiple Endocrine Neoplasia Mutation in a Patient with a Prototypic Multiple Endocrine Neoplasia Presentation. CardioRenal Medicine, 2016, 6, 129-134.	1.9	4
98	Hypertension Myocardial Fibrosis. Journal of Clinical Hypertension, 2007, 9, 558-559.	2.0	3
99	Treatment of hypertension in diabetes: a contemporary approach with a focus on improving cardiovascular outcomes. Expert Review of Endocrinology and Metabolism, 2016, 11, 41-50.	2.4	3
100	Renal resistive index as a novel biomarker for cardiovascular and kidney risk reduction in type II diabetes. Journal of Clinical Hypertension, 2020, 22, 231-233.	2.0	3
101	Evaluation and Treatment of Patients with Prolactinâ€ S ecreting Pituitary Tumors. International Journal of Gynecology and Obstetrics, 1980, 17, 421-427.	2.3	2
102	Interaction of Islet Â-Cell and Â-Cell in the Regulation of Glucose Homeostasis in HI/HA Syndrome Patients With the GDHH454Y Mutation. Diabetes, 2014, 63, 4008-4010.	0.6	2
103	Uncovering a Mineralocorticoid Receptor–Dependent Adipose–Vascular Axis: Implications for Vascular Dysfunction in Obesity?. Diabetes, 2016, 65, 2127-2129.	0.6	2
104	Management of Hypertension in Patients with COVID-19: Implication of Angiotensin-Converting Enzyme 2. Cardiology Plus, 2021, 6, 210-217.	0.7	1
105	Basic Research and Clinical Practice: Bench to Bedside. Journal of the Cardiometabolic Syndrome, 2006, 1, 89-89.	1.7	0
106	The Reply. American Journal of Medicine, 2015, 128, e11.	1.5	0
107	Exercise training maintains cardiac output and stroke volume in hypertensive TG (mRENâ€2)27 rats with impaired diastolic function. FASEB Journal, 2007, 21, A930.	0.5	0
108	Experimental Hypertension is Associated with Differential Expression of Angiotensinâ€(1–12) in Heart of Hypertensive and Normotensive Rats. FASEB Journal, 2008, 22, 1210.20.	0.5	0

#	Article	IF	CITATIONS
109	Renin Inhibition Attenuates Ang II Induced Oxidative Stress and Remodeling in the Pancreas of the Ren2 Rat (tg (mREN2)27). FASEB Journal, 2008, 22, 758.12.	0.5	0
110	Mineralocorticoid Receptor (MR) Inhibition Attenuates High Saltâ€Aldosterone Induced Increases in Vascular Reninâ€Angiotensinâ€Aldoesterone System (RAAS) and Oxidative Stress. FASEB Journal, 2009, 23, 626.18.	0.5	0
111	Rosuvastatin Attenuates Pulmonary Arterial Hypertension in the Transgenic (mREN2)27 (Ren2) Rat. FASEB Journal, 2009, 23, 770.4.	0.5	0
112	Mineralcorticoid Receptor (MR) Antagonism Attenuates Glomerular Filtration Barrier Remodeling in the Transgenic Ren2 Rat. FASEB Journal, 2009, 23, 803.16.	0.5	0
113	Effect of Age in RAS Activation and Insulin Signaling in the Pancreatic Tissue of db/db Mice. FASEB Journal, 2011, 25, 1063.7.	0.5	0
114	Characterization of the coronary vascular transcriptome in a rat model of metabolic syndrome. FASEB Journal, 2013, 27, .	0.5	0
115	Differential Remodeling Characteristics of Femoral and Mesenteric Arteries from Mice with Dietâ€Induced Obesity. FASEB Journal, 2013, 27, lb698.	0.5	0
116	Enhanced coronary vasoconstriction in western dietâ€induced obesity is associated with alterations in NHE1, SERCA2a and 3. FASEB Journal, 2013, 27, lb660.	0.5	0
117	Impaired Ca 2+ signaling following acutely elevated glucose in mouse endothelial cell tubes. FASEB Journal, 2013, 27, 678.2.	0.5	0
118	Estrogen receptor alpha mediated activation of the endothelial epithelial sodium channel: role in the genesis of arterial stiffness. FASEB Journal, 2018, 32, 846.7.	0.5	0