Betty P Tsao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1407813/publications.pdf

Version: 2024-02-01

32410 37326 10,699 140 55 100 citations h-index g-index papers 163 163 163 11944 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nature Genetics, 2008, 40, 204-210.	9.4	1,192
2	Gene Copy-Number Variation and Associated Polymorphisms of Complement Component C4 in Human Systemic Lupus Erythematosus (SLE): Low Copy Number Is a Risk Factor for and High Copy Number Is a Protective Factor against SLE Susceptibility in European Americans. American Journal of Human Genetics, 2007, 80, 1037-1054.	2.6	411
3	Association of increased interferon-inducible gene expression with disease activity and lupus nephritis in patients with systemic lupus erythematosus. Arthritis and Rheumatism, 2006, 54, 2951-2962.	6.7	404
4	Sex-specific association of X-linked Toll-like receptor 7 (TLR7) with male systemic lupus erythematosus. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15838-15843.	3.3	324
5	Genetic susceptibility to systemic lupus erythematosus in the genomic era. Nature Reviews Rheumatology, 2010, 6, 683-692.	3.5	319
6	Transancestral mapping and genetic load in systemic lupus erythematosus. Nature Communications, 2017, 8, 16021.	5.8	314
7	Altered Immune Responses in Interleukin 10 Transgenic Mice. Journal of Experimental Medicine, 1997, 185, 2101-2110.	4.2	261
8	Association of a functional variant downstream of TNFAIP3 with systemic lupus erythematosus. Nature Genetics, 2011 , 43 , 253 - 258 .	9.4	242
9	Endâ€Stage Renal Disease in African Americans With Lupus Nephritis Is Associated With <i>APOL1</i> Arthritis and Rheumatology, 2014, 66, 390-396.	2.9	242
10	A Functional Variant in MicroRNA-146a Promoter Modulates Its Expression and Confers Disease Risk for Systemic Lupus Erythematosus. PLoS Genetics, 2011, 7, e1002128.	1.5	241
11	Identification and characterization of SmD183-119-reactive T cells that provide T cell help for pathogenic anti-double-stranded DNA antibodies. Arthritis and Rheumatism, 2003, 48, 475-485.	6.7	216
12	Differential Genetic Associations for Systemic Lupus Erythematosus Based on Anti–dsDNA Autoantibody Production. PLoS Genetics, 2011, 7, e1001323.	1.5	206
13	Association of Genetic Variants in Complement Factor H and Factor H-Related Genes with Systemic Lupus Erythematosus Susceptibility. PLoS Genetics, 2011, 7, e1002079.	1.5	181
14	The genetics of human systemic lupus erythematosus. Trends in Immunology, 2003, 24, 595-602.	2.9	165
15	Identification of IRF8, TMEM39A, and IKZF3-ZPBP2 as Susceptibility Loci for Systemic Lupus Erythematosus in a Large-Scale Multiracial Replication Study. American Journal of Human Genetics, 2012, 90, 648-660.	2.6	161
16	Risk Alleles for Systemic Lupus Erythematosus in a Large Case-Control Collection and Associations with Clinical Subphenotypes. PLoS Genetics, 2011, 7, e1001311.	1.5	154
17	A Comprehensive Analysis of Shared Loci between Systemic Lupus Erythematosus (SLE) and Sixteen Autoimmune Diseases Reveals Limited Genetic Overlap. PLoS Genetics, 2011, 7, e1002406.	1.5	148
18	Comparison of pathogenic and non-pathogenic murine antibodies to DNA: antigen binding and structural characteristics. International Immunology, 1994, 6, 817-830.	1.8	145

#	Article	IF	CITATIONS
19	A stop codon polymorphism of Toll-like receptor 5 is associated with resistance to systemic lupus erythematosus. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10593-10597.	3.3	144
20	A missense variant in NCF1 is associated with susceptibility to multiple autoimmune diseases. Nature Genetics, 2017, 49, 433-437.	9.4	143
21	Update on human systemic lupus erythematosus genetics. Current Opinion in Rheumatology, 2004, 16, 513-521.	2.0	139
22	Genomeâ€Wide Association Study in an Amerindian Ancestry Population Reveals Novel Systemic Lupus Erythematosus Risk Loci and the Role of European Admixture. Arthritis and Rheumatology, 2016, 68, 932-943.	2.9	138
23	Association of a functional IRF7 variant with systemic lupus erythematosus. Arthritis and Rheumatism, 2011, 63, 749-754.	6.7	118
24	Recent insights into the genetic basis of systemic lupus erythematosus. Annals of the Rheumatic Diseases, 2013, 72, ii56-ii61.	0.5	117
25	Lupus Nephritis Susceptibility Loci in Women with Systemic Lupus Erythematosus. Journal of the American Society of Nephrology: JASN, 2014, 25, 2859-2870.	3.0	117
26	X Chromosome Dose and Sex Bias in Autoimmune Diseases: Increased Prevalence of 47,XXX in Systemic Lupus Erythematosus and Sjögren's Syndrome. Arthritis and Rheumatology, 2016, 68, 1290-1300.	2.9	114
27	Regulatory polymorphisms modulate the expression of HLA class II molecules and promote autoimmunity. ELife, 2016, 5, .	2.8	113
28	Phenotypic associations of genetic susceptibility loci in systemic lupus erythematosus. Annals of the Rheumatic Diseases, 2011, 70, 1752-1757.	0.5	110
29	Identification of novel genetic susceptibility loci in African American lupus patients in a candidate gene association study. Arthritis and Rheumatism, 2011, 63, 3493-3501.	6.7	109
30	Admixture Mapping in Lupus Identifies Multiple Functional Variants within IFIH1 Associated with Apoptosis, Inflammation, and Autoantibody Production. PLoS Genetics, 2013, 9, e1003222.	1.5	107
31	MicroRNA-3148 Modulates Allelic Expression of Toll-Like Receptor 7 Variant Associated with Systemic Lupus Erythematosus. PLoS Genetics, 2013, 9, e1003336.	1.5	107
32	A loss-of-function variant of PTPN22 is associated with reduced risk of systemic lupus erythematosus. Human Molecular Genetics, 2008, 18, 569-579.	1.4	106
33	Advances in lupus genetics and epigenetics. Current Opinion in Rheumatology, 2014, 26, 482-492.	2.0	104
34	Treatment with a consensus peptide based on amino acid sequences in autoantibodies prevents T cell activation by autoantigens and delays disease onset in murine lupus. Arthritis and Rheumatism, 2001, 44, 432-441.	6.7	103
35	Updates in Lupus Genetics. Current Rheumatology Reports, 2017, 19, 68.	2.1	99
36	PARP alleles within the linked chromosomal region are associated with systemic lupus erythematosus. Journal of Clinical Investigation, 1999, 103, 1135-1140.	3.9	99

#	Article	IF	CITATIONS
37	Fine mapping of Xq28: both <i>MECP2 and IRAK1</i> contribute to risk for systemic lupus erythematosus in multiple ancestral groups. Annals of the Rheumatic Diseases, 2013, 72, 437-444.	0.5	97
38	Abnormal distribution of Fc? receptor type IIa polymorphisms in Korean patients with systemic lupus erythematosus. Arthritis and Rheumatism, 1998, 41, 421-426.	6.7	92
39	Inhibition of Aberrant Circulating Tfh Cell Proportions by Corticosteroids in Patients with Systemic Lupus Erythematosus. PLoS ONE, 2012, 7, e51982.	1.1	91
40	Identification of a Systemic Lupus Erythematosus Risk Locus Spanning <i>ATG16L2, FCHSD2</i> , and <i>P2RY2</i> in Koreans. Arthritis and Rheumatology, 2016, 68, 1197-1209.	2.9	89
41	Analysis of autosomal genes reveals gene–sex interactions and higher total genetic risk in men with systemic lupus erythematosus. Annals of the Rheumatic Diseases, 2012, 71, 694-699.	0.5	87
42	Association analysis of the R620W polymorphism of protein tyrosine phosphatase PTPN22 in systemic lupus erythematosus families: Increased t allele frequency in systemic lupus erythematosus patients with autoimmune thyroid disease. Arthritis and Rheumatism, 2005, 52, 2396-2402.	6.7	80
43	The IRF5–TNPO3 association with systemic lupus erythematosus has two components that other autoimmune disorders variably share. Human Molecular Genetics, 2015, 24, 582-596.	1.4	74
44	Identification of a Systemic Lupus Erythematosus Susceptibility Locus at 11p13 between PDHX and CD44 in a Multiethnic Study. American Journal of Human Genetics, 2011, 88, 83-91.	2.6	72
45	A peptide derived from an autoantibody can stimulate t cells in the (nzb \tilde{A} — nzw)f1 mouse model of systemic lupus erythematosus. Arthritis and Rheumatism, 1993, 36, 355-364.	6.7	70
46	Impact of genetic ancestry and sociodemographic status on the clinical expression of systemic lupus erythematosus in American Indian–European populations. Arthritis and Rheumatism, 2012, 64, 3687-3694.	6.7	70
47	ABIN1 Dysfunction as a Genetic Basis for Lupus Nephritis. Journal of the American Society of Nephrology: JASN, 2013, 24, 1743-1754.	3.0	70
48	Association of two independent functional risk haplotypes in <i>TNIP1</i> with systemic lupus erythematosus. Arthritis and Rheumatism, 2012, 64, 3695-3705.	6.7	69
49	Systemic lupus erythematosus genome scan: Support for linkage at 1q23, 2q33, 16q12-13, and 17q21-23 and novel evidence at 3p24, 10q23-24, 13q32, and 18q22-23. Arthritis and Rheumatism, 2004, 50, 3203-3210.	6.7	66
50	In vivofunctional analysis ofin vitroprotein binding sites in the immunoglobulin heavy chain enhancer. Nucleic Acids Research, 1988, 16, 3239-3253.	6.5	64
51	Association of a common complement receptor 2 haplotype with increased risk of systemic lupus erythematosus. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3961-3966.	3.3	62
52	ApoEâ^'/â^'Fasâ^'/â^' C57BL/6 mice: a novel murine model simultaneously exhibits lupus nephritis, atherosclerosis, and osteopenia. Journal of Lipid Research, 2007, 48, 794-805.	2.0	62
53	Novel identification of the <i>IRF7</i> region as an anticentromere autoantibody propensity locus in systemic sclerosis. Annals of the Rheumatic Diseases, 2012, 71, 114-119.	0.5	62
54	Current topics in human SLE genetics. Seminars in Immunopathology, 2006, 28, 97-107.	4.0	61

#	Article	IF	CITATIONS
55	Variation in the <i>ICAM1–ICAM4–ICAM5</i> locus is associated with systemic lupus erythematosus susceptibility in multiple ancestries. Annals of the Rheumatic Diseases, 2012, 71, 1809-1814.	0.5	60
56	Two Functional Lupus-Associated BLK Promoter Variants Control Cell-Type- and Developmental-Stage-Specific Transcription. American Journal of Human Genetics, 2014, 94, 586-598.	2.6	59
57	PTPN22 Association in Systemic Lupus Erythematosus (SLE) with Respect to Individual Ancestry and Clinical Sub-Phenotypes. PLoS ONE, 2013, 8, e69404.	1.1	57
58	Linkage and interaction of loci on 1q23 and 16q12 may contribute to susceptibility to systemic lupus erythematosus. Arthritis and Rheumatism, 2002, 46, 2928-2936.	6.7	55
59	Association of IRF5 polymorphisms with activation of the interferon \hat{l}_{\pm} pathway. Annals of the Rheumatic Diseases, 2010, 69, 611-617.	0.5	54
60	Evidence for gene–gene epistatic interactions among susceptibility loci for systemic lupus erythematosus. Arthritis and Rheumatism, 2012, 64, 485-492.	6.7	53
61	Familiality and co-occurrence of clinical features of systemic lupus erythematosus. Arthritis and Rheumatism, 2002, 46, 2678-2685.	6.7	51
62	Evaluation of $\langle i \rangle$ TRAF6 $\langle i \rangle$ in a large multiancestral lupus cohort. Arthritis and Rheumatism, 2012, 64, 1960-1969.	6.7	51
63	Trans-Ancestral Studies Fine Map the SLE-Susceptibility Locus TNFSF4. PLoS Genetics, 2013, 9, e1003554.	1.5	50
64	Association of tumor necrosis factor \hat{l}_{\pm} polymorphism, but not the shared epitope, with increased radiographic progression in a seropositive rheumatoid arthritis inception cohort. Arthritis and Rheumatism, 2006, 54, 1105-1116.	6.7	49
65	B cells are anergic in transgenic mice that express IgM anti-DNA antibodies. European Journal of Immunology, 1993, 23, 2332-2339.	1.6	48
66	Treatment with apolipoprotein A-1 mimetic peptide reduces lupus-like manifestations in a murine lupus model of accelerated atherosclerosis. Arthritis Research and Therapy, 2010, 12, R93.	1.6	47
67	Genetics of systemic lupus erythematosus: immune responses and end organ resistance to damage. Current Opinion in Immunology, 2014, 31, 87-96.	2.4	47
68	An update on genetic studies of systemic lupus erythematosus. Current Rheumatology Reports, 2002, 4, 359-367.	2.1	46
69	Genetic contributions to lupus nephritis in a multi-ethnic cohort of systemic lupus erythematous patients. PLoS ONE, 2018, 13, e0199003.	1.1	46
70	Genetic analyses of interferon pathway-related genes reveal multiple new loci associated with systemic lupus erythematosus. Arthritis and Rheumatism, 2011, 63, 2049-2057.	6.7	45
71	CD72 polymorphisms associated with alternative splicing modify susceptibility to human systemic lupus erythematosus through epistatic interaction with FCGR2B. Human Molecular Genetics, 2004, 13, 2907-2917.	1.4	43
72	Identification of interferon-inducible genes as diagnostic biomarker for systemic lupus erythematosus. Clinical Rheumatology, 2015, 34, 71-79.	1.0	43

#	Article	IF	CITATIONS
73	Genetic fine mapping of systemic lupus erythematosus MHC associations in Europeans and African Americans. Human Molecular Genetics, 2018, 27, 3813-3824.	1.4	43
74	Interaction betweenRANKL andHLA-DRB1 genotypes may contribute to younger age at onset of seropositive rheumatoid arthritis in an inception cohort. Arthritis and Rheumatism, 2004, 50, 3093-3103.	6.7	42
75	Modulation of IL-6 induced RANKL expression in arthritic synovium by a transcription factor SOX5. Scientific Reports, 2016, 6, 32001.	1.6	41
76	Maternal HLA class II compatibility in men with systemic lupus erythematosus. Arthritis and Rheumatism, 2005, 52, 2768-2773.	6.7	36
77	Association of <i>PPP2CA</i> polymorphisms with systemic lupus erythematosus susceptibility in multiple ethnic groups. Arthritis and Rheumatism, 2011, 63, 2755-2763.	6.7	36
78	Preferential Binding to Elk-1 by SLE-Associated IL10 Risk Allele Upregulates IL10 Expression. PLoS Genetics, 2013, 9, e1003870.	1.5	36
79	Lupus Risk Variant Increases pSTAT1 Binding and Decreases ETS1 Expression. American Journal of Human Genetics, 2015, 96, 731-739.	2.6	36
80	Amino acid signatures of HLA Class-I and II molecules are strongly associated with SLE susceptibility and autoantibody production in Eastern Asians. PLoS Genetics, 2019, 15, e1008092.	1.5	36
81	Current advances in the human lupus genetics. Current Rheumatology Reports, 2004, 6, 391-398.	2.1	35
82	A functional <i>RANKL</i> polymorphism associated with younger age at onset of rheumatoid arthritis. Arthritis and Rheumatism, 2010, 62, 2864-2875.	6.7	35
83	Restored Immunosuppressive Effect of Mesenchymal Stem Cells on B Cells After Olfactory 1/Early B Cell Factor–Associated Zincâ€Finger Protein Downâ€Regulation in Patients With Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2014, 66, 3413-3423.	2.9	35
84	Association of Fc? receptor IIA, but not IIB and IIIA, polymorphisms with systemic lupus erythematosus: A family-based association study in Caucasians. Arthritis and Rheumatism, 2004, 50, 671-673.	6.7	34
85	A plausibly causal functional lupus-associated risk variant in the STAT1–STAT4 locus. Human Molecular Genetics, 2018, 27, 2392-2404.	1.4	34
86	Transcription Factor SOX5 Promotes the Migration and Invasion of Fibroblast-Like Synoviocytes in Part by Regulating MMP-9 Expression in Collagen-Induced Arthritis. Frontiers in Immunology, 2018, 9, 749.	2.2	33
87	Plasma levels of osteopontin identify patients at risk for organ damage in systemic lupus erythematosus. Arthritis Research and Therapy, 2013, 15, R18.	1.6	32
88	Reduced Let-7f in Bone Marrow-Derived Mesenchymal Stem Cells Triggers Treg/Th17 Imbalance in Patients With Systemic Lupus Erythematosus. Frontiers in Immunology, 2020, 11, 233.	2.2	30
89	Single-nucleotide polymorphisms of T cell receptor ? chain in patients with systemic lupus erythematosus. Arthritis and Rheumatism, 1999, 42, 2601-2605.	6.7	29
90	European population substructure is associated with mucocutaneous manifestations and autoantibody production in systemic lupus erythematosus. Arthritis and Rheumatism, 2009, 60, 2448-2456.	6.7	27

#	Article	IF	CITATIONS
91	Lupus risk variants in the PXK locus alter B-cell receptor internalization. Frontiers in Genetics, 2015, 5, 450.	1.1	25
92	Genetic variants in systemic lupus erythematosus susceptibility loci, XKR6 and GLT1D1 are associated with childhood-onset SLE in a Korean cohort. Scientific Reports, 2018, 8, 9962.	1.6	25
93	Genetics and systemic lupus erythematosus. Current Rheumatology Reports, 2001, 3, 183-190.	2.1	22
94	Transcription factor Ikaros Represses Protein Phosphatase 2A (PP2A) Expression through an Intronic Binding Site. Journal of Biological Chemistry, 2014, 289, 13751-13757.	1.6	20
95	Prediction models of treatment response in lupus nephritis. Kidney International, 2022, 101, 379-389.	2.6	18
96	$Fc\hat{l}^3$ receptor IIIA polymorphism in Korean patients with systemic lupus erythematosus. Rheumatology International, 2002, 21, 222-226.	1.5	17
97	Decreased <i>SMG7</i> expression associates with lupus-risk variants and elevated antinuclear antibody production. Annals of the Rheumatic Diseases, 2016, 75, 2007-2013.	0.5	16
98	Variable Association of Reactive Intermediate Genes with Systemic Lupus Erythematosus in Populations with Different African Ancestry. Journal of Rheumatology, 2013, 40, 842-849.	1.0	15
99	Genetics and systemic lupus erythematosus. Current Rheumatology Reports, 2000, 2, 13-18.	2.1	14
100	Identification and characterization of a peptide mimetic that may detect a species of disease-associated anticardiolipin antibodies in patients with the antiphospholipid syndrome. Arthritis and Rheumatism, 2003, 48, 737-745.	6.7	14
101	Human SLE variant <i>NCF1</i> -R90H promotes kidney damage and murine lupus through enhanced Tfh2 responses induced by defective efferocytosis of macrophages. Annals of the Rheumatic Diseases, 2022, 81, 255-267.	0.5	14
102	Male-only Systemic Lupus. Journal of Rheumatology, 2010, 37, 1480-1487.	1.0	13
103	Transcriptional effects of a lupus-associated polymorphism in the 5′ untranslated region (UTR) of human complement receptor 2 (CR2/CD21). Molecular Immunology, 2012, 52, 165-173.	1.0	12
104	CD3Zhypermethylation is associated with severe clinical manifestations in systemic lupus erythematosus and reduces CD3ζ-chain expression in T cells. Rheumatology, 2016, 56, kew405.	0.9	12
105	Rigorous Plasma Microbiome Analysis Method Enables Disease Association Discovery in Clinic. Frontiers in Microbiology, 2020, 11, 613268.	1.5	12
106	<scp>Upâ€Regulated</scp> Interleukinâ€10 Induced by <scp>E2F</scp> Transcription Factor 2– <scp>MicroRNA</scp> â€17â€5p Circuitry in Extrafollicular Effector B Cells Contributes to Autoantibody Production in Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2022, 74, 496-507.	2.9	12
107	Commentary: Genetics of systemic lupus erythematosus. Current Opinion in Rheumatology, 1997, 9, 377-379.	2.0	10
108	Poly(ADP)â€ribose polymerase and susceptibility to systemic lupus erythematosus and primary antiphospholipid syndrome: Comment on the article by Delrieu et al. Arthritis and Rheumatism, 2000, 43, 1421-1422.	6.7	10

#	Article	IF	Citations
109	Brief Report: Singleâ€nucleotide polymorphisms in <i>VKORC1</i> are risk factors for systemic lupus erythematosus in Asians. Arthritis and Rheumatism, 2013, 65, 211-215.	6.7	10
110	Genetic associations of leptin-related polymorphisms with systemic lupus erythematosus. Clinical Immunology, 2015, 161, 157-162.	1.4	10
111	Preferential association of a functional variant in complement receptor 2 with antibodies to double-stranded DNA. Annals of the Rheumatic Diseases, 2016, 75, 242-252.	0.5	10
112	RNASE2 Mediates Age-Associated B Cell Expansion Through Monocyte Derived IL-10 in Patients With Systemic Lupus Erythematosus. Frontiers in Immunology, 2022, 13, 752189.	2.2	9
113	T cell up-regulation of B cells via their idiotypes contributing to the development of systemic lupus erythematosus. American Journal of Medicine, 1988, 85, 32-34.	0.6	8
114	Olf1/EBF associated zinc finger protein interfered with antinuclear antibody production in patients with systemic lupus erythematosus. Arthritis Research and Therapy, 2010, 12, R59.	1.6	8
115	Deep sequencing reveals a DAP1 regulatory haplotype that potentiates autoimmunity in systemic lupus erythematosus. Genome Biology, 2020, 21, 281.	3.8	8
116	Membrane association and orientation of rat renal activities capable of degrading glutathione. International Journal of Biochemistry & Cell Biology, 1980, 12, 219-222.	0.8	7
117	The role of cytoplasmic free calcium concentration in B-cell tolerance. Cellular Immunology, 1987, 108, 335-342.	1.4	7
118	Central suppression of monoclonal B cells: DNP-MGG suppresses proliferation and immunoglobulin synthesis in anti-DNP-secreting hybridoma and myeloma. Cellular Immunology, 1984, 88, 96-108.	1.4	6
119	Evidence that the hydrophobic domain of rat renal \hat{l}^3 -glutamyltransferase spans the brush border membrane. Biochimica Et Biophysica Acta - Biomembranes, 1982, 690, 199-206.	1.4	5
120	Genetics of Human SLE. , 2019, , 54-68.		5
121	Constitutive Genes and Lupus. , 2011, , 47-61.		4
122	Genetics of Human SLE. , 2013, , 35-45.		4
123	Pathogenesis of Systemic Lupus Erythematosus. , 2009, , 1233-1262.		4
124	Complement <i>Complement <i>Complex, and Autoimmunity. Arthritis and Rheumatology, 2022, 74, 1318-1320.</i></i>	2.9	4
125	Contribution of Major Histocompatibility Complex (MHC) to Upregulation of Anti-DNA Antibody in Transgenic Mice. Journal of Autoimmunity, 1993, 6, 1-9.	3.0	3
126	Focused transcription from the human CR2/CD21 core promoter is regulated by synergistic activity of TATA and Initiator elements in mature B cells. Cellular and Molecular Immunology, 2016, 13, 119-131.	4.8	3

#	Article	IF	CITATIONS
127	lg-transgenic mice as models for studying the regulation and role of anti-DNA antibodies in murine lupus. ImmunoMethods, 1992, 1, 185-190.	0.8	2
128	Plasmin immunization preferentially induces potentially prothrombotic IgG anticardiolipin antibodies in MRL/MpJ mice. Arthritis and Rheumatism, 2009, 60, 3108-3117.	6.7	2
129	Genes and genetics in human SLE. , 2021, , 85-96.		2
130	IFNL4 Genotype Does Not Associate with CD4 T-Cell Recovery in People Living with Human Immunodeficiency Virus. AIDS Research and Human Retroviruses, 2021, 37, 184-188.	0.5	2
131	Idiotype selection is an immunoregulatory mechanism which contributes to the pathogenesis of systemic lupus erythematosus. Journal of Autoimmunity, 1988, 1, 673-681.	3.0	1
132	Genes and Genetics in Human Systemic Lupus Erythematosus. , 2016, , 69-76.		1
133	Macrophage-derived soluble factors mediate suppression induced by 2,4-dinitrophenyl-conjugated mouse IgG in hybridoma cells. Cellular Immunology, 1985, 91, 362-374.	1.4	0
134	Autoimmunity and Tolerance in Ig-Transgenic Mice: Murine SLE as a Model to Study B Cell Tolerance. International Reviews of Immunology, 1994, 11, 305-320.	1.5	0
135	GG-07â€Regulatory polymorphisms in EMSY gene are associated with autoantibodies in healthy individuals. , 2018, , .		0
136	$180 \hat{a} \in \dots$ Examining the transcriptional impact of liganded estrogen receptor alpha in the inflammatory milieu of systemic lupus erythematosus., 2019,,.		0
137	Lupus susceptibility genes. , 2021, , 25-33.		0
138	A genome wide association study of systemic lupus erythematosus (SLE) by SLEGEN, the International SLE Genetics Consortium FASEB Journal, 2008, 22, 850.1.	0.2	0
139	Systemic Lupus Erythematosus, Genetics. , 2014, , 1171-1178.		0
140	Autoantibodies as a Source of Peptides That Regulate Autoantibody Production. , 1999, , 371-388.		0