
Juan C Opazo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1407728/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolution of the DAN gene family in vertebrates. Developmental Biology, 2022, 482, 34-43.	2.0	4
2	Identification of multiple TAR DNA binding protein retropseudogene lineages during the evolution of primates. Scientific Reports, 2022, 12, 3823.	3.3	0
3	Positive selection and gene duplications in tumour suppressor genes reveal clues about how cetaceans resist cancer. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202592.	2.6	32
4	Independent duplications of the Golgi phosphoprotein 3 oncogene in birds. Scientific Reports, 2021, 11, 12483.	3.3	4
5	Whole-Genome Duplications and the Diversification of the Globin-X Genes of Vertebrates. Genome Biology and Evolution, 2021, 13, .	2.5	5
6	Evolutionary history of the vertebrate Piwi gene family. PeerJ, 2021, 9, e12451.	2.0	7
7	Discovery of the world's highest-dwelling mammal. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18169-18171.	7.1	31
8	The Clobin Gene Family in Arthropods: Evolution and Functional Diversity. Frontiers in Genetics, 2020, 11, 858.	2.3	8
9	Integrative taxonomy of the southernmost tucu-tucus in the world: differentiation of the nominal forms associated with Ctenomys magellanicus Bennett, 1836 (Rodentia, Hystricomorpha, Ctenomyidae). Mammalian Biology, 2020, 100, 125-139.	1.5	22
10	Evolutionary analyses reveal independent origins of gene repertoires and structural motifs associated to fast inactivation in calcium-selective TRPV channels. Scientific Reports, 2020, 10, 8684.	3.3	20
11	Evolution of nodal and nodalâ€related genes and the putative composition of the heterodimers that trigger the nodal pathway in vertebrates. Evolution & Development, 2019, 21, 205-217.	2.0	11
12	The Reprimo gene family member, reprimo-like (rprml), is required for blood development in embryonic zebrafish. Scientific Reports, 2019, 9, 7131.	3.3	4
13	Sugerencias para mejorar la regulación chilena de manipulación de vertebrados terrestres en poblaciones naturales en el contexto de investigaciones cientÃficas. Gayana, 2019, 83, 63-67.	0.1	6
14	Gene Turnover and Diversification of the α- and β-Clobin Gene Families in Sauropsid Vertebrates. Genome Biology and Evolution, 2018, 10, 344-358.	2.5	23
15	Phylogenetic evidence for independent origins of GDF1 and GDF3 genes in anurans and mammals. Scientific Reports, 2018, 8, 13595.	3.3	8
16	An association between differential expression and genetic divergence in the Patagonian olive mouse (<i>Abrothrix olivacea</i>). Molecular Ecology, 2018, 27, 3274-3286.	3.9	28
17	The Reprimo Gene Family: A Novel Gene Lineage in Gastric Cancer with Tumor Suppressive Properties. International Journal of Molecular Sciences, 2018, 19, 1862.	4.1	23
18	Expression of RPRM/rprm in the Olfactory System of Embryonic Zebrafish (Danio rerio). Frontiers in Neuroanatomy, 2018, 12, 23.	1.7	5

#	Article	IF	CITATIONS
19	Evolution of dopamine receptors: phylogenetic evidence suggests a later origin of the DRD _{2l} and DRD _{4rs} dopamine receptor gene lineages. PeerJ, 2018, 6, e4593.	2.0	9
20	Evolution of the β-adrenoreceptors in vertebrates. General and Comparative Endocrinology, 2017, 240, 129-137.	1.8	14
21	Evolution of the α2-adrenoreceptors in vertebrates: ADRA2D is absent in mammals and crocodiles. General and Comparative Endocrinology, 2017, 250, 85-94.	1.8	15
22	Progressive erosion of the Relaxin1 gene in bovids. General and Comparative Endocrinology, 2017, 252, 12-17.	1.8	12
23	Reprimo tissue-specific expression pattern is conserved between zebrafish and human. PLoS ONE, 2017, 12, e0178274.	2.5	10
24	Evolution of gremlin 2 in cetartiodactyl mammals: gene loss coincides with lack of upper jaw incisors in ruminants. PeerJ, 2017, 5, e2901.	2.0	4
25	Evolutionary history of the reprimo tumor suppressor gene family in vertebrates with a description of a new reprimo gene lineage. Gene, 2016, 591, 245-254.	2.2	24
26	Gene Turnover in the Avian Globin Gene Families and Evolutionary Changes in Hemoglobin Isoform Expression. Molecular Biology and Evolution, 2015, 32, 871-887.	8.9	40
27	Characterization of the Kidney Transcriptome of the Long-Haired Mouse Abrothrix hirta (Rodentia,) Tj ETQq1 1 0	.784314 r 2.5	gBŢ /Overloc
28	Ancient Duplications and Expression Divergence in the Globin Gene Superfamily of Vertebrates: Insights from the Elephant Shark Genome and Transcriptome. Molecular Biology and Evolution, 2015, 32, 1684-1694.	8.9	44
29	The Circadian Clock of Teleost Fish: A Comparative Analysis Reveals Distinct Fates for Duplicated Genes. Journal of Molecular Evolution, 2015, 80, 57-64.	1.8	24
30	Lineage-Specific Expansion of the Chalcone Synthase Gene Family in Rosids. PLoS ONE, 2015, 10, e0133400.	2.5	8
31	Increased rate of hair keratin gene loss in the cetacean lineage. BMC Genomics, 2014, 15, 869.	2.8	30
32	Evolution of the Relaxin/Insulin-Like Gene Family in Anthropoid Primates. Genome Biology and Evolution, 2014, 6, 491-499.	2.5	13
33	Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science, 2014, 346, 1254449.	12.6	300
34	Comparative genomics reveals insights into avian genome evolution and adaptation. Science, 2014, 346, 1311-1320.	12.6	895
35	Characterization of the kidney transcriptome of the South American olive mouse Abrothrix olivacea. BMC Genomics, 2014, 15, 446.	2.8	15
36	Rodent diversity in South America: transitioning into the genomics era. Frontiers in Ecology and Evolution, 2014, 2, .	2.2	28

#	Article	IF	CITATIONS
37	Accelerated Evolutionary Rate of the Myoglobin Gene in Long-Diving Whales. Journal of Molecular Evolution, 2013, 76, 380-387.	1.8	23
38	Gene duplication, genome duplication, and the functional diversification of vertebrate globins. Molecular Phylogenetics and Evolution, 2013, 66, 469-478.	2.7	110
39	The Complete Mitochondrial Genome of the Land Snail Cornu aspersum (Helicidae: Mollusca): Intra-Specific Divergence of Protein-Coding Genes and Phylogenetic Considerations within Euthyneura. PLoS ONE, 2013, 8, e67299.	2.5	33
40	Genomic Organization and Differential Signature of Positive Selection in the Alpha and Beta Globin Gene Clusters in Two Cetacean Species. Genome Biology and Evolution, 2013, 5, 2359-2367.	2.5	13
41	Whole-Genome Duplication and the Functional Diversification of Teleost Fish Hemoglobins. Molecular Biology and Evolution, 2013, 30, 140-153.	8.9	95
42	How to Make a Dolphin: Molecular Signature of Positive Selection in Cetacean Genome. PLoS ONE, 2013, 8, e65491.	2.5	38
43	Whole-Genome Duplications Spurred the Functional Diversification of the Globin Gene Superfamily in Vertebrates. Molecular Biology and Evolution, 2012, 29, 303-312.	8.9	88
44	Evolution of the Globin Gene Family in Deuterostomes: Lineage-Specific Patterns of Diversification and Attrition. Molecular Biology and Evolution, 2012, 29, 1735-1745.	8.9	54
45	Resolution of the laurasiatherian phylogeny: Evidence from genomic data. Molecular Phylogenetics and Evolution, 2012, 64, 685-689.	2.7	39
46	INSL4 Pseudogenes Help Define the Relaxin Family Repertoire in the Common Ancestor of Placental Mammals. Journal of Molecular Evolution, 2012, 75, 73-78.	1.8	10
47	A proposal for the common names for species of Chiropotes (Pitheciinae: Primates). Zootaxa, 2012, 3507, .	0.5	5
48	Gene turnover and differential retention in the relaxin/insulin-like gene family in primates. Molecular Phylogenetics and Evolution, 2012, 63, 768-776.	2.7	14
49	Gene Duplication and Positive Selection Explains Unusual Physiological Roles of the Relaxin Gene in the European Rabbit. Journal of Molecular Evolution, 2012, 74, 52-60.	1.8	7
50	Using new tools to solve an old problem: the evolution of endothermy in vertebrates. Trends in Ecology and Evolution, 2011, 26, 414-423.	8.7	69
51	Differential Loss and Retention of Cytoglobin, Myoglobin, and Globin-E during the Radiation of Vertebrates. Genome Biology and Evolution, 2011, 3, 588-600.	2.5	64
52	Evolution of the Relaxin/Insulin-like Gene Family in Placental Mammals: Implications for Its Early Evolution. Journal of Molecular Evolution, 2011, 72, 72-79.	1.8	27
53	Phylogenetic diversification of the globin gene superfamily in chordates. IUBMB Life, 2011, 63, 313-322.	3.4	47
54	Silencing, Positive Selection and Parallel Evolution: Busy History of Primate Cytochromes c. PLoS ONE, 2011, 6, e26269.	2.5	14

#	Article	IF	CITATIONS
55	Developmental regulation of hemoglobin synthesis in the green anole lizard <i>Anolis carolinensis</i> . Journal of Experimental Biology, 2011, 214, 575-581.	1.7	26
56	Gene cooption and convergent evolution of oxygen transport hemoglobins in jawed and jawless vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14274-14279.	7.1	71
57	Lineage-Specific Patterns of Functional Diversification in the Â- and Â-Globin Gene Families of Tetrapod Vertebrates. Molecular Biology and Evolution, 2010, 27, 1126-1138.	8.9	58
58	Origin and Ascendancy of a Chimeric Fusion Gene: The Â/Â-Globin Gene of Paenungulate Mammals. Molecular Biology and Evolution, 2009, 26, 1469-1478.	8.9	36
59	Molecular evolution of cytochrome b in high- and low-altitude deer mice (genus Peromyscus). Heredity, 2009, 102, 226-235.	2.6	38
60	A fully resolved genus level phylogeny of neotropical primates (Platyrrhini). Molecular Phylogenetics and Evolution, 2009, 53, 694-702.	2.7	102
61	The human progesterone receptor shows evidence of adaptive evolution associated with its ability to act as a transcription factor. Molecular Phylogenetics and Evolution, 2008, 47, 637-649.	2.7	33
62	Molecular evolution of the cytochrome c oxidase subunit 5A gene in primates. BMC Evolutionary Biology, 2008, 8, 8.	3.2	46
63	Phylogeography of the Subterranean Rodent <i>Spalacopus cyanus</i> (Caviomorpha, Octodontidae). Journal of Mammalogy, 2008, 89, 837-844.	1.3	17
64	Genomic evidence for independent origins of β-like globin genes in monotremes and therian mammals. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1590-1595.	7.1	57
65	New Genes Originated via Multiple Recombinational Pathways in the Â-Globin Gene Family of Rodents. Molecular Biology and Evolution, 2008, 25, 2589-2600.	8.9	43
66	Rapid Rates of Lineage-Specific Gene Duplication and Deletion in the α-Globin Gene Family. Molecular Biology and Evolution, 2008, 25, 591-602.	8.9	78
67	Differential loss of embryonic globin genes during the radiation of placental mammals. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12950-12955.	7.1	64
68	Distinct genomic signatures of adaptation in pre- and postnatal environments during human evolution. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3215-3220.	7.1	61
69	Adaptive Functional Divergence Among Triplicated α-Globin Genes in Rodents. Genetics, 2008, 178, 1623-1638.	2.9	29
70	Genomics, biogeography, and the diversification of placental mammals. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14395-14400.	7.1	158
71	Complex Signatures of Selection and Gene Conversion in the Duplicated Globin Genes of House Mice. Genetics, 2007, 177, 481-500.	2.9	57
72	Phylogenetic relationships and divergence times among New World monkeys (Platyrrhini, Primates). Molecular Phylogenetics and Evolution, 2006, 40, 274-280.	2.7	161

#	Article	lF	CITATIONS
73	A molecular timescale for caviomorph rodents (Mammalia, Hystricognathi). Molecular Phylogenetics and Evolution, 2005, 37, 932-937.	2.7	114
74	Rapid electrostatic evolution at the binding site for cytochrome c on cytochrome c oxidase in anthropoid primates. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6379-6384.	7.1	79
75	Adaptive Evolution of the Insulin Gene in Caviomorph Rodents. Molecular Biology and Evolution, 2005, 22, 1290-1298.	8.9	50
76	Cell size and basal metabolic rate in hummingbirds. Revista Chilena De Historia Natural, 2005, 78, .	1.2	9
77	Blood glucose concentration in caviomorph rodents. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2004, 137, 57-64.	1.8	35
78	Phenotypic Flexibility in a Novel Thermal Environment: Phylogenetic Inertia in Thermogenic Capacity and Evolutionary Adaptation in Organ Size. Physiological and Biochemical Zoology, 2004, 77, 805-815.	1.5	18
79	Thermal acclimation and non-shivering thermogenesis in three species of South American rodents: a comparison between arid and mesic habitats. Journal of Arid Environments, 2001, 48, 581-590.	2.4	21
80	Arousal from torpor in the chilean mouse-opposum (Thylamys elegans): does non-shivering thermogenesis play a role?. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 1999, 123, 393-397.	1.8	38
81	Thermal Acclimation, Maximum Metabolic Rate, and Nonshivering Thermogenesis of Phyllotis xanthopygus (Rodentia) in the Andes Mountains. Journal of Mammalogy, 1999, 80, 742-748.	1.3	46
82	Sequence and structural conservation reveal fingerprint residues in TRP channels. ELife, 0, 11, .	6.0	7