
## Asghar Habibnejad Korayem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1407607/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Computational predictions for estimating the performance of flexural and compressive strength of epoxy resin-based artificial stones. Engineering With Computers, 2023, 39, 347-372.                                                                                       | 6.1  | 7         |
| 2  | Designing Angstromâ€Scale Asymmetric MOFâ€onâ€MOF Cavities for High Monovalent Ion Selectivity.<br>Advanced Materials, 2022, 34, e2107878.                                                                                                                                 | 21.0 | 47        |
| 3  | Dispersion stability of chitosan grafted graphene oxide nanosheets in cementitious environments and their effects on the fluidity of cement mortar nanocomposites. Journal of Applied Polymer Science, 2022, 139, .                                                        | 2.6  | 3         |
| 4  | Evaluation of the phase composition, microstructure, mechanical performance, and resistance to acid<br>attack of blended cement paste composed of binary trass-cement system. Construction and Building<br>Materials, 2022, 333, 127356.                                   | 7.2  | 5         |
| 5  | Heterogeneous asymmetric passable cavities within graphene oxide nanochannels for highly efficient<br>lithium sieving. Desalination, 2022, 538, 115888.                                                                                                                    | 8.2  | 11        |
| 6  | Incorporation of Natural Lithiumâ€lon Trappers into Graphene Oxide Nanosheets. Advanced Materials<br>Technologies, 2021, 6, 2000665.                                                                                                                                       | 5.8  | 30        |
| 7  | The effects of graphene oxide-silica nanohybrids on the workability, hydration, and mechanical properties of Portland cement paste. Construction and Building Materials, 2021, 266, 121016.                                                                                | 7.2  | 52        |
| 8  | Insight from perfectly selective and ultrafast proton transport through anhydrous asymmetrical<br>graphene oxide membranes under Grotthuss mechanism. Journal of Membrane Science, 2021, 618, 118735.                                                                      | 8.2  | 24        |
| 9  | The synergic effects of metakaolin and polycarboxylate-ether on dispersion of graphene oxide in<br>cementitious environments and macro-level properties of graphene oxide modified cement composites.<br>Construction and Building Materials, 2021, 270, 121462.           | 7.2  | 12        |
| 10 | Low humid transport of anions in layered double hydroxides membranes using polydopamine coating.<br>Journal of Membrane Science, 2021, 624, 118974.                                                                                                                        | 8.2  | 13        |
| 11 | The halloysite nanotube effects on workability, mechanical properties, permeability and microstructure of cementitious mortar. Construction and Building Materials, 2021, 267, 120873.                                                                                     | 7.2  | 15        |
| 12 | Performance improvement of cement paste loaded with MWCNT–magnetite nanocomposite. Advances<br>in Cement Research, 2021, 33, 357-366.                                                                                                                                      | 1.6  | 2         |
| 13 | Mechanical hydrolysis imparts self-destruction of water molecules under steric confinement.<br>Physical Chemistry Chemical Physics, 2021, 23, 5999-6008.                                                                                                                   | 2.8  | 5         |
| 14 | Evaluation of the dispersion of metakaolin–graphene oxide hybrid in water and cement pore solution:<br>can metakaolin really improve the dispersion of graphene oxide in the calcium-rich environment of<br>hydrating cement matrix?. RSC Advances, 2021, 11, 18623-18636. | 3.6  | 14        |
| 15 | Zeolitic imidazolate framework nanoleaves (ZIF-L) enhancement of strength and durability of portland cement composites. Construction and Building Materials, 2021, 272, 122015.                                                                                            | 7.2  | 16        |
| 16 | The mechanical strength of the artificial stones, containing the travertine wastes and sand. Journal of Materials Research and Technology, 2021, 11, 1688-1709.                                                                                                            | 5.8  | 24        |
| 17 | Hydrous Proton Transfer through Graphene Interlayer: An Extraordinary Mechanism under Magnifier.<br>Advanced Materials Technologies, 2021, 6, 2001049.                                                                                                                     | 5.8  | 10        |
| 18 | Environmental and mechanical impacts of waste incinerated acidic sludge ash as filler in hot mix asphalt. Case Studies in Construction Materials, 2021, 14, e00504.                                                                                                        | 1.7  | 6         |

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Investigation of ultrasonication energy effect on workability, mechanical properties and pore<br>structure of halloysite nanotube reinforced cement mortars. Construction and Building Materials,<br>2021, 304, 124610. | 7.2  | 9         |
| 20 | Simultaneous effects of nanosilica and basalt fiber on mechanical properties and durability of cementitious mortar: an experimental study. Canadian Journal of Civil Engineering, 2021, 48, 1323-1334.                  | 1.3  | 8         |
| 21 | Using graphene oxide to improve physical property and control ASR expansion of cement mortar.<br>Construction and Building Materials, 2021, 307, 125006.                                                                | 7.2  | 13        |
| 22 | Turning two waste streams into one solution for enhancing sustainability of the built environment.<br>Resources, Conservation and Recycling, 2021, 174, 105778.                                                         | 10.8 | 8         |
| 23 | The effect of D-spacing on the ion selectivity performance of MXene membrane. Journal of Membrane<br>Science, 2021, 639, 119752.                                                                                        | 8.2  | 38        |
| 24 | Aging Evaluation of Amorphous Carbon-Modified Asphalt Binders Using Rheological and Chemical<br>Approach. Journal of Materials in Civil Engineering, 2020, 32, .                                                        | 2.9  | 11        |
| 25 | Integrally hydrophobic cementitious composites made with waste amorphous carbon powder.<br>Construction and Building Materials, 2020, 233, 117238.                                                                      | 7.2  | 17        |
| 26 | New molecular understanding of hydrated ion trapping mechanism during thermally-driven<br>desalination by pervaporation using GO membrane. Journal of Membrane Science, 2020, 598, 117687.                              | 8.2  | 65        |
| 27 | Bond Behavior between BFRP Rebar and Seawater Sea Sand Concrete. Advances in Civil Engineering, 2020, 2020, 1-10.                                                                                                       | 0.7  | 4         |
| 28 | Effect of chemistry and geometry of GO nanochannels on the Li ion selectivity and recovery.<br>Desalination, 2020, 496, 114729.                                                                                         | 8.2  | 42        |
| 29 | Microstructural study and surface properties of concrete pavements containing nanoparticles.<br>Construction and Building Materials, 2020, 262, 120103.                                                                 | 7.2  | 17        |
| 30 | High-performance cement containing nanosized Fe3O4–decorated graphene oxide. Construction and<br>Building Materials, 2020, 260, 120454.                                                                                 | 7.2  | 11        |
| 31 | Orbital Overlapping through Induction Bonding Overcomes the Intrinsic Delamination of 3D-Printed Cementitious Binders. ACS Nano, 2020, 14, 9466-9477.                                                                   | 14.6 | 22        |
| 32 | A comparative study on the mechanical, physical and morphological properties of cement-micro/nanoFe3O4 composite. Scientific Reports, 2020, 10, 2859.                                                                   | 3.3  | 27        |
| 33 | Laboratory evaluation of stone mastic asphalt containing amorphous carbon powder as filler material. Construction and Building Materials, 2020, 243, 118280.                                                            | 7.2  | 13        |
| 34 | Graphene oxide for surface treatment of concrete: A novel method to protect concrete.<br>Construction and Building Materials, 2020, 243, 118229.                                                                        | 7.2  | 38        |
| 35 | Graphene oxide in ceramic-based layered structure: Nanosheet optimization. Construction and Building Materials, 2019, 224, 266-275.                                                                                     | 7.2  | 15        |
| 36 | Tunable, Multifunctional Ceramic Composites via Intercalation of Fused Graphene Boron Nitride<br>Nanosheets. ACS Applied Materials & Interfaces, 2019, 11, 8635-8644.                                                   | 8.0  | 25        |

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Lithium ion-selective membrane with 2D subnanometer channels. Water Research, 2019, 159, 313-323.                                                                                                                 | 11.3 | 159       |
| 38 | A novel method to enhance the interlayer bonding of 3D printing concrete: An experimental and computational investigation. Cement and Concrete Composites, 2019, 99, 112-119.                                     | 10.7 | 101       |
| 39 | Effects of Spraying Various Nanoparticles at Early Ages on Improving Surface Characteristics of Concrete Pavements. International Journal of Civil Engineering, 2019, 17, 1455-1468.                              | 2.0  | 18        |
| 40 | Design principles of ion selective nanostructured membranes for the extraction of lithium ions.<br>Nature Communications, 2019, 10, 5793.                                                                         | 12.8 | 317       |
| 41 | Barriers to achieving highly dispersed graphene oxide in cementitious composites: An experimental and computational study. Construction and Building Materials, 2019, 199, 269-278.                               | 7.2  | 60        |
| 42 | Mechanical and electromechanical properties of functionalized hexagonal boron nitride nanosheet:<br>A density functional theory study. Journal of Chemical Physics, 2018, 149, 114701.                            | 3.0  | 23        |
| 43 | Physical and chemical effects of siliceous particles at nano, micro, and macro scales on properties of self-consolidating mortar overlays. Construction and Building Materials, 2018, 189, 1140-1154.             | 7.2  | 9         |
| 44 | Rutting and fatigue performance of asphalt mixtures containing amorphous carbon as filler and binder modifier. Construction and Building Materials, 2018, 188, 905-914.                                           | 7.2  | 50        |
| 45 | A review of the impact of micro- and nanoparticles on freeze-thaw durability of hardened concrete:<br>Mechanism perspective. Construction and Building Materials, 2018, 186, 1105-1113.                           | 7.2  | 112       |
| 46 | Coupled effect of CO2 attack and tensile stress on well cement under CO2 storage conditions.<br>Construction and Building Materials, 2017, 130, 92-102.                                                           | 7.2  | 31        |
| 47 | Fabrication of smart magnetic nanocomposite asymmetric membrane capsules for the controlled release of nitrate. Environmental Nanotechnology, Monitoring and Management, 2017, 8, 233-243.                        | 2.9  | 19        |
| 48 | A review of dispersion of nanoparticles in cementitious matrices: Nanoparticle geometry perspective.<br>Construction and Building Materials, 2017, 153, 346-357.                                                  | 7.2  | 133       |
| 49 | Evaluating the effect of amorphous carbon powder on moisture susceptibility and mechanical resistance of asphalt mixtures. Construction and Building Materials, 2017, 152, 182-191.                               | 7.2  | 39        |
| 50 | Failure of CFRP-to-steel double strap joint bonded using carbon nanotubes modified epoxy adhesive at<br>moderately elevated temperatures. Composites Part B: Engineering, 2016, 94, 95-101.                       | 12.0 | 40        |
| 51 | Incorporation of graphene oxide and silica fume into cement paste: A study of dispersion and compressive strength. Construction and Building Materials, 2016, 123, 327-335.                                       | 7.2  | 235       |
| 52 | Agglomeration process of surfactant-dispersed carbon nanotubes in unstable dispersion: A two-stage agglomeration model and experimental evidence. Powder Technology, 2016, 301, 412-420.                          | 4.2  | 37        |
| 53 | Surface modification of polyurethane via creating a biocompatible superhydrophilic nanostructured<br>layer: role of surface chemistry and structure. Journal of Experimental Nanoscience, 2016, 11,<br>1087-1109. | 2.4  | 41        |
| 54 | The properties of fly ash based geopolymer mortars made with dune sand. Materials and Design, 2016, 92, 571-578.                                                                                                  | 7.0  | 88        |

| #  | Article                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Effect of carbon nanotube modified epoxy adhesive on CFRP-to-steel interface. Composites Part B:<br>Engineering, 2015, 79, 95-104.                                                     | 12.0 | 70        |
| 56 | Effect of ultrasonication energy on engineering properties of carbon nanotube reinforced cement pastes. Carbon, 2015, 85, 212-220.                                                     | 10.3 | 233       |
| 57 | Mechanical properties and microstructure of a graphene oxide–cement composite. Cement and<br>Concrete Composites, 2015, 58, 140-147.                                                   | 10.7 | 623       |
| 58 | Optimizing the degree of carbon nanotube dispersion in a solvent for producing reinforced epoxy matrices. Powder Technology, 2015, 284, 541-550.                                       | 4.2  | 37        |
| 59 | Bond Characterization of Steel-CFRP with Carbon Nanotube Modified Epoxy Adhesive via Pull-off<br>Tests. International Journal of Structural Stability and Dynamics, 2015, 15, 1540027. | 2.4  | 8         |
| 60 | Reinforcing Effects of Graphene Oxide on Portland Cement Paste. Journal of Materials in Civil<br>Engineering, 2015, 27, .                                                              | 2.9  | 323       |
| 61 | Mechanical properties of very high strength steel at elevated temperatures. Fire Safety Journal, 2014, 64, 27-35.                                                                      | 3.1  | 55        |
| 62 | Transition and Stability of Copolymer Adsorption Morphologies on the Surface of Carbon Nanotubes and Implications on Their Dispersion. Langmuir, 2014, 30, 10035-10042.                | 3.5  | 14        |
| 63 | Reinforcing brittle and ductile epoxy matrices using carbon nanotubes masterbatch. Composites Part<br>A: Applied Science and Manufacturing, 2014, 61, 126-133.                         | 7.6  | 64        |
| 64 | Damping and microstructure of fly ash-based geopolymers. Journal of Materials Science, 2013, 48, 3128-3137.                                                                            | 3.7  | 28        |
| 65 | The role of alumina on performance of alkali-activated slag paste exposed to 50°C. Cement and Concrete Research, 2013, 54, 143-150.                                                    | 11.0 | 28        |
| 66 | BUCKLING BEHAVIOR OF SHORT MULTI-WALLED CARBON NANOTUBES UNDER AXIAL COMPRESSION LOADS.<br>International Journal of Structural Stability and Dynamics, 2012, 12, 1250045.              | 2.4  | 6         |
| 67 | Investigation on Buckling Behavior of Short MWCNT. Procedia Engineering, 2011, 14, 250-255.                                                                                            | 1.2  | 2         |