Wenguang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1406927/publications.pdf

Version: 2024-02-01

13865 20961 14,573 177 67 115 citations h-index g-index papers 178 178 178 15447 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Zwitterionâ€Initiated Spontaneously Polymerized Super Adhesive Showing Realâ€Time Deployable and Longâ€Term Highâ€Strength Adhesion against Various Harsh Environments. Advanced Functional Materials, 2022, 32, 2109144.	14.9	37
2	Multiple H-bonding chain extender-based polyurethane: Ultrastiffness, hot-melt adhesion, and 3D printing finger orthosis. Chemical Engineering Journal, 2022, 433, 133260.	12.7	11
3	A hyperbranched polymer-based water-resistant adhesive: Durable underwater adhesion and primer for anchoring anti-fouling hydrogel coating. Science China Technological Sciences, 2022, 65, 201-213.	4.0	12
4	3D printed biomimetic epithelium/stroma bilayer hydrogel implant for corneal regeneration. Bioactive Materials, 2022, 17, 234-247.	15.6	28
5	A hyperbranched polymer elastomer-based pressure sensitive adhesive. Journal of Materials Chemistry A, 2022, 10, 1257-1269.	10.3	25
6	Polyzwitterion Manipulates Remineralization and Antibiofilm Functions against Dental Demineralization. ACS Nano, 2022, 16, 3119-3134.	14.6	29
7	Hyaluronic Acid-Melatonin Nanoparticles Improve the Dysregulated Intestinal Barrier, Microbiome and Immune Response in Mice with Dextran Sodium Sulfate-Induced Colitis. Journal of Biomedical Nanotechnology, 2022, 18, 175-184.	1.1	9
8	Functional hydrogels for the treatment of myocardial infarction. NPG Asia Materials, 2022, 14 , .	7.9	41
9	3D Printed Highâ€Strength Supramolecular Polymer Hydrogelâ€Cushioned Radially and Circumferentially Oriented Meniscus Substitute. Advanced Functional Materials, 2022, 32, .	14.9	28
10	3D-printed, bi-layer, biomimetic artificial periosteum for boosting bone regeneration. Bio-Design and Manufacturing, 2022, 5, 540-555.	7.7	12
11	Engineering Injectable Antiâ€Inflammatory Hydrogels to Treat Acute Myocardial Infarction. Advanced NanoBiomed Research, 2022, 2, .	3.6	6
12	Biomedical polymers: synthesis, properties, and applications. Science China Chemistry, 2022, 65, 1010-1075.	8.2	85
13	Bacteria activated-macrophage membrane-coated tough nanocomposite hydrogel with targeted photothermal antibacterial ability for infected wound healing. Chemical Engineering Journal, 2021, 420, 127638.	12.7	52
14	Multiple Hâ∈Bonding Chain Extenderâ∈Based Ultrastiff Thermoplastic Polyurethanes with Autonomous Selfâ∈Healability, Solventâ∈Free Adhesiveness, and AIE Fluorescence. Advanced Functional Materials, 2021, 31, 2006944.	14.9	138
15	An injectable and antifouling self-fused supramolecular hydrogel for preventing postoperative and recurrent adhesions. Chemical Engineering Journal, 2021, 404, 127096.	12.7	41
16	An injectable hydrogel to reverse the adverse microenvironment of diabetic infarcted heart. Materialia, 2021, 15, 100957.	2.7	9
17	A bilayered scaffold with segregated hydrophilicity-hydrophobicity enables reconstruction of goat hierarchical temporomandibular joint condyle cartilage. Acta Biomaterialia, 2021, 121, 288-302.	8.3	11
18	3D printing of lubricative stiff supramolecular polymer hydrogels for meniscus replacement. Biomaterials Science, 2021, 9, 5116-5126.	5.4	8

#	Article	IF	Citations
19	An unparalleled H-bonding and ion-bonding crosslinked waterborne polyurethane with super toughness and unprecedented fracture energy. Materials Horizons, 2021, 8, 2742-2749.	12.2	69
20	A Selfâ€Thickening and Selfâ€Strengthening Strategy for 3D Printing Highâ€Strength and Antiswelling Supramolecular Polymer Hydrogels as Meniscus Substitutes. Advanced Functional Materials, 2021, 31, 2100462.	14.9	60
21	An Ultrasoft Selfâ€Fused Supramolecular Polymer Hydrogel for Completely Preventing Postoperative Tissue Adhesion. Advanced Materials, 2021, 33, e2008395.	21.0	104
22	A Short Review on Selfâ€Healing Thermoplastic Polyurethanes. Macromolecular Chemistry and Physics, 2021, 222, 2100002.	2.2	54
23	Robust and Antiswelling Hollow Hydrogel Tube with Antibacterial and Antithrombotic Ability for Emergency Vascular Replacement. ACS Applied Bio Materials, 2021, 4, 3598-3607.	4.6	9
24	Recent advances in wet adhesives: Adhesion mechanism, design principle and applications. Progress in Polymer Science, 2021, 116, 101388.	24.7	251
25	One zwitterionic injectable hydrogel with ion conductivity enables efficient restoration of cardiac function after myocardial infarction. Chemical Engineering Journal, 2021, 418, 129352.	12.7	40
26	A tough and self-fusing elastomer tape. Chemical Engineering Journal, 2021, 417, 127967.	12.7	10
27	Polymer Pressureâ€Sensitive Adhesive with A Temperatureâ€Insensitive Loss Factor Operating Under Water and Oil. Advanced Functional Materials, 2021, 31, 2104296.	14.9	34
28	3D printing stiff antibacterial hydrogels for meniscus replacement. Applied Materials Today, 2021, 24, 101089.	4.3	11
29	A multifunctional biomedical patch based on hyperbranched epoxy polymer and MXene. Science China Technological Sciences, 2021, 64, 2744-2754.	4.0	11
30	Tea eggs-inspired high-strength natural polymer hydrogels. Bioactive Materials, 2021, 6, 2820-2828.	15.6	39
31	An in situ-forming polyzwitterion hydrogel: Towards vitreous substitute application. Bioactive Materials, 2021, 6, 3085-3096.	15.6	18
32	A Solventâ€Free and Waterâ€Resistant Dipole–Dipole Interactionâ€Based Super Adhesive. Macromolecular Rapid Communications, 2021, 42, 2100010.	3.9	8
33	Wound dressing change facilitated by spraying zinc ions. Materials Horizons, 2020, 7, 605-614.	12.2	106
34	A smart indwelling needle with on-demand switchable anticoagulant and hemostatic activities. Materials Horizons, 2020, 7, 1091-1100.	12.2	14
35	Coadministration of an Adhesive Conductive Hydrogel Patch and an Injectable Hydrogel to Treat Myocardial Infarction. ACS Applied Materials & Samp; Interfaces, 2020, 12, 2039-2048.	8.0	136
36	Fabrication of strong hydrogen-bonding induced coacervate adhesive hydrogels with antibacterial and hemostatic activities. Biomaterials Science, 2020, 8, 1455-1463.	5.4	71

#	Article	IF	CITATIONS
37	Coaxial Scaleâ€Up Printing of Diameterâ€Tunable Biohybrid Hydrogel Microtubes with High Strength, Perfusability, and Endothelialization. Advanced Functional Materials, 2020, 30, 2001485.	14.9	73
38	"Ferrero-like―nanoparticles knotted injectable hydrogels to initially scavenge ROS and lastingly promote vascularization in infarcted hearts. Science China Technological Sciences, 2020, 63, 2435-2448.	4.0	8
39	A Janus Hydrogel Wet Adhesive for Internal Tissue Repair and Antiâ€Postoperative Adhesion. Advanced Functional Materials, 2020, 30, 2005689.	14.9	182
40	Injectable Hyaluronic Acid Hydrogel Loaded with Functionalized Human Mesenchymal Stem Cell Aggregates for Repairing Infarcted Myocardium. ACS Biomaterials Science and Engineering, 2020, 6, 6926-6937.	5 . 2	37
41	A robust poly(<i>N</i> -acryloyl-2-glycine)-based sponge for rapid hemostasis. Biomaterials Science, 2020, 8, 3760-3771.	5.4	20
42	T-shaped trifunctional crosslinker-toughening hydrogels. Science China Technological Sciences, 2020, 63, 1721-1729.	4.0	10
43	Mechanically and biologically skin-like elastomers for bio-integrated electronics. Nature Communications, 2020, 11, 1107.	12.8	162
44	Polymerization of $\langle i \rangle N \langle i \rangle$ -acryloylsemicarbazide: a facile and versatile strategy to tailor-make highly stiff and tough hydrogels. Materials Horizons, 2020, 7, 1160-1170.	12.2	71
45	Stiffness Selfâ€Tuned Shape Memory Hydrogels for Embolization of Aneurysms. Advanced Functional Materials, 2020, 30, 1910197.	14.9	38
46	A Fe ³⁺ -crosslinked pyrogallol-tethered gelatin adhesive hydrogel with antibacterial activity for wound healing. Biomaterials Science, 2020, 8, 3164-3172.	5.4	60
47	Superâ€Soft DNA/Dopamineâ€Graftedâ€Dextran Hydrogel as Dynamic Wire for Electric Circuits Switched by a Microbial Metabolism Process. Advanced Science, 2020, 7, 2000684.	11.2	35
48	A high-strength polyacrylic acid-based adhesive hydrogel. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2020, 50, 1055-1065.	0.5	1
49	High-strength hydrogel-based bioinks. Materials Chemistry Frontiers, 2019, 3, 1736-1746.	5.9	44
50	Waterâ€Triggered Hyperbranched Polymer Universal Adhesives: From Strong Underwater Adhesion to Rapid Sealing Hemostasis. Advanced Materials, 2019, 31, e1905761.	21.0	352
51	A conductive and biodegradable hydrogel for minimally delivering adipose-derived stem cells. Science China Technological Sciences, 2019, 62, 1747-1754.	4.0	22
52	A high strength, anti-fouling, self-healable, and thermoplastic supramolecular polymer hydrogel with low fibrotic response. Science China Technological Sciences, 2019, 62, 569-577.	4.0	18
53	Osteochondral Regeneration with 3Dâ€Printed Biodegradable Highâ€Strength Supramolecular Polymer Reinforcedâ€Gelatin Hydrogel Scaffolds. Advanced Science, 2019, 6, 1900867.	11.2	239
54	A Reversibly Responsive Fluorochromic Hydrogel Based on Lanthanide–Mannose Complex. Advanced Science, 2019, 6, 1802112.	11.2	76

#	Article	IF	Citations
55	Conductive Hydrogen Sulfide-Releasing Hydrogel Encapsulating ADSCs for Myocardial Infarction Treatment. ACS Applied Materials & Samp; Interfaces, 2019, 11, 14619-14629.	8.0	93
56	3D printing of biomimetic vasculature for tissue regeneration. Materials Horizons, 2019, 6, 1197-1206.	12.2	88
57	Rebuilding Postinfarcted Cardiac Functions by Injecting TIIA@PDA Nanoparticle-Cross-linked ROS-Sensitive Hydrogels. ACS Applied Materials & Samp; Interfaces, 2019, 11, 2880-2890.	8.0	79
58	A Mechanically Robust, Stiff, and Tough Hyperbranched Supramolecular Polymer Hydrogel. Macromolecular Rapid Communications, 2019, 40, e1800819.	3.9	14
59	Paintable and Rapidly Bondable Conductive Hydrogels as Therapeutic Cardiac Patches. Advanced Materials, 2018, 30, e1704235.	21.0	329
60	An Injectable Supramolecular Polymer Nanocomposite Hydrogel for Prevention of Breast Cancer Recurrence with Theranostic and Mammoplastic Functions. Advanced Functional Materials, 2018, 28, 1801000.	14.9	171
61	Biomaterials-enabled cornea regeneration in patients at high risk for rejection of donor tissue transplantation. Npj Regenerative Medicine, 2018, 3, 2.	5.2	76
62	Direct 3D Printing of High Strength Biohybrid Gradient Hydrogel Scaffolds for Efficient Repair of Osteochondral Defect. Advanced Functional Materials, 2018, 28, 1706644.	14.9	243
63	An injectable conductive hydrogel encapsulating plasmid DNA-eNOs and ADSCs for treating myocardial infarction. Biomaterials, 2018, 160, 69-81.	11.4	147
64	A high strength semi-degradable polysaccharide-based hybrid hydrogel for promoting cell adhesion and proliferation. Journal of Materials Science, 2018, 53, 6302-6312.	3.7	16
65	Injectable hyperbranched poly (\hat{l}^2 -amino ester) hydrogels with on-demand degradation profiles to match wound healing processes. Chemical Science, 2018, 9, 2179-2187.	7.4	123
66	Radiopaque Highly Stiff and Tough Shape Memory Hydrogel Microcoils for Permanent Embolization of Arteries. Advanced Functional Materials, 2018, 28, 1705962.	14.9	107
67	NIR-responsive cancer cytomembrane-cloaked carrier-free nanosystems for highly efficient and self-targeted tumor drug delivery. Biomaterials, 2018, 159, 25-36.	11.4	111
68	Nanocomposite Hydrogels: 3Dâ€Bioprinted Osteoblastâ€Laden Nanocomposite Hydrogel Constructs with Induced Microenvironments Promote Cell Viability, Differentiation, and Osteogenesis both In Vitro and In Vivo (Adv. Sci. 3/2018). Advanced Science, 2018, 5, 1870013.	11.2	4
69	Catechol functionalized hyperbranched polymers as biomedical materials. Progress in Polymer Science, 2018, 78, 47-55.	24.7	85
70	3Dâ€Bioprinted Osteoblast‣aden Nanocomposite Hydrogel Constructs with Induced Microenvironments Promote Cell Viability, Differentiation, and Osteogenesis both In Vitro and In Vivo. Advanced Science, 2018, 5, 1700550.	11.2	142
71	Nanoclay Incorporated Polyethylene-Glycol Nanocomposite Hydrogels for Stimulating (i> In Vitro (i> and (i> In Vivo (i> Osteogenesis. Journal of Biomedical Nanotechnology, 2018, 14, 662-674.	1.1	26
72	Carrier-free nanodrug-based virus-surface-mimicking nanosystems for efficient drug/gene co-delivery. Biomaterials Science, 2018, 6, 3300-3308.	5.4	18

#	Article	IF	Citations
73	Antifouling Super Water Absorbent Supramolecular Polymer Hydrogel as an Artificial Vitreous Body. Advanced Science, 2018, 5, 1800711.	11.2	64
74	An Autolytic High Strength Instant Adhesive Hydrogel for Emergency Selfâ€Rescue. Advanced Functional Materials, 2018, 28, 1804925.	14.9	125
7 5	A hybrid injectable hydrogel from hyperbranched PEG macromer as a stem cell delivery and retention platform for diabetic wound healing. Acta Biomaterialia, 2018, 75, 63-74.	8.3	213
76	Poly(vinyl diaminotriazine): From Molecular Recognition to Highâ€Strength Hydrogels. Macromolecular Rapid Communications, 2018, 39, e1800190.	3.9	10
77	A pHâ€Responsive Biodegradable Highâ€Strength Hydrogel as Potential Gastric Resident Filler. Macromolecular Materials and Engineering, 2018, 303, 1800290.	3.6	19
78	NIRâ€Activated Polydopamineâ€Coated Carrierâ€Free "Nanobomb―for In Situ Onâ€Demand Drug Release. Advanced Science, 2018, 5, 1800155.	11.2	130
79	A highly tough and stiff supramolecular polymer double network hydrogel. Polymer, 2018, 153, 193-200.	3.8	65
80	Poly(<i>N</i> -acryloyl glycinamide): a fascinating polymer that exhibits a range of properties from UCST to high-strength hydrogels. Chemical Communications, 2018, 54, 10540-10553.	4.1	73
81	A high strength pH responsive supramolecular copolymer hydrogel. Science China Technological Sciences, 2017, 60, 78-83.	4.0	21
82	A robust, highly stretchable supramolecular polymer conductive hydrogel with self-healability and thermo-processability. Scientific Reports, 2017, 7, 41566.	3.3	132
83	A π-π conjugation-containing soft and conductive injectable polymer hydrogel highly efficiently rebuilds cardiac function after myocardial infarction. Biomaterials, 2017, 122, 63-71.	11.4	147
84	A High Strength Self-Healable Antibacterial and Anti-Inflammatory Supramolecular Polymer Hydrogel. Macromolecular Rapid Communications, 2017, 38, 1600695.	3.9	62
85	Bioinspired fabrication of high strength hydrogels from non-covalent interactions. Progress in Polymer Science, 2017, 71, 1-25.	24.7	379
86	Repair of volumetric bone defects with a high strength BMP-loaded-mineralized hydrogel tubular scaffold. Journal of Materials Chemistry B, 2017, 5, 5588-5596.	5.8	23
87	3D-Printed High Strength Bioactive Supramolecular Polymer/Clay Nanocomposite Hydrogel Scaffold for Bone Regeneration. ACS Biomaterials Science and Engineering, 2017, 3, 1109-1118.	5.2	187
88	A Mineralized High Strength and Tough Hydrogel for Skull Bone Regeneration. Advanced Functional Materials, 2017, 27, 1604327.	14.9	124
89	Hyperbranched PEG-based multi-NHS polymer and bioconjugation with BSA. Polymer Chemistry, 2017, 8, 1283-1287.	3.9	16
90	Methyl matters: An autonomic rapid self-healing supramolecular poly(N-methacryloyl glycinamide) hydrogel. Polymer, 2017, 126, 1-8.	3.8	36

#	Article	IF	Citations
91	Opinion on the recent development of injectable biomaterials for treating myocardial infarction. Science China Technological Sciences, 2017, 60, 1278-1280.	4.0	2
92	Directed neural stem cell differentiation on polyaniline-coated high strength hydrogels. Materials Today Chemistry, 2016, 1-2, 15-22.	3.5	42
93	Sea Cucumber-Inspired Autolytic Hydrogels Exhibiting Tunable High Mechanical Performances, Repairability, and Reusability. ACS Applied Materials & Interfaces, 2016, 8, 8956-8966.	8.0	100
94	A thermoresponsive supramolecular copolymer hydrogel for the embolization of kidney arteries. Biomaterials Science, 2016, 4, 1673-1681.	5.4	40
95	Harnessing isomerization-mediated manipulation of nonspecific cell/matrix interactions to reversibly trigger and suspend stem cell differentiation. Chemical Science, 2016, 7, 333-338.	7.4	32
96	Hydrogen-Bonding Toughened Hydrogels and Emerging CO ₂ -Responsive Shape Memory Effect. Macromolecular Rapid Communications, 2015, 36, 1585-1591.	3.9	55
97	Photoactive Selfâ€Shaping Hydrogels as Noncontact 3D Macro/Microscopic Photoprinting Platforms. Macromolecular Rapid Communications, 2015, 36, 2129-2136.	3.9	17
98	The Unusual Mechanical Evolution of Biodegradable Double Hydrogen Bonding Strengthened Hydrogels in Response to pH Change. Macromolecular Chemistry and Physics, 2015, 216, 164-171.	2.2	12
99	Dipole–Dipole and Hâ€Bonding Interactions Significantly Enhance the Multifaceted Mechanical Properties of Thermoresponsive Shape Memory Hydrogels. Advanced Functional Materials, 2015, 25, 471-480.	14.9	296
100	Correction: Water-soluble and phosphorus-containing carbon dots with strong green fluorescence for cell labeling. Journal of Materials Chemistry B, 2015, 3, 3392-3392.	5.8	1
101	Hydrogen bonded and ionically crosslinked high strength hydrogels exhibiting Ca ²⁺ -triggered shape memory properties and volume shrinkage for cell detachment. Journal of Materials Chemistry B, 2015, 3, 6347-6354.	5.8	61
102	High Strength Multifunctional Multiwalled Hydrogel Tubes: Ion-Triggered Shape Memory, Antibacterial, and Anti-inflammatory Efficacies. ACS Applied Materials & Samp; Interfaces, 2015, 7, 16865-16872.	8.0	90
103	Enhanced Therapeutic siRNA to Tumor Cells by a pH-Sensitive Agmatine–Chitosan Bioconjugate. ACS Applied Materials & Disconjugate. ACS Applied Materials & Disconjugate. ACS	8.0	51
104	Nano-silver in situ hybridized collagen scaffolds for regeneration of infected full-thickness burn skin. Journal of Materials Chemistry B, 2015, 3, 4231-4241.	5.8	58
105	A Mechanically Strong, Highly Stable, Thermoplastic, and Selfâ€Healable Supramolecular Polymer Hydrogel. Advanced Materials, 2015, 27, 3566-3571.	21.0	684
106	Co-delivery of doxorubicin and tumor-suppressing p53 gene using aÂPOSS-based star-shaped polymer for cancer therapy. Biomaterials, 2015, 55, 12-23.	11.4	83
107	A nucleoside responsive diaminotriazine-based hydrogen bonding strengthened hydrogel. Materials Letters, 2015, 142, 71-74.	2.6	14
108	Polycation- <i>b</i> -Polyzwitterion Copolymer Grafted Luminescent Carbon Dots As a Multifunctional Platform for Serum-Resistant Gene Delivery and Bioimaging. ACS Applied Materials & Enterfaces, 2014, 6, 20487-20497.	8.0	114

#	Article	IF	CITATIONS
109	Redoxâ€Triggered Selfâ€Rolling Robust Hydrogel Tubes for Cell Encapsulation. Macromolecular Rapid Communications, 2014, 35, 344-349.	3.9	29
110	Biological applications of carbon dots. Science China Chemistry, 2014, 57, 522-539.	8.2	77
111	Ultrastable coreâ€"shell structured nanoparticles directly made from zwitterionic polymers. Chemical Communications, 2014, 50, 15030-15033.	4.1	14
112	UV light-triggered unpacking of DNA to enhance gene transfection of azobenzene-containing polycations. Journal of Materials Chemistry B, 2014, 2, 3868.	5.8	15
113	An anti-inflammatory cell-free collagen/resveratrol scaffold for repairing osteochondral defects in rabbits. Acta Biomaterialia, 2014, 10, 4983-4995.	8.3	89
114	High-Strength Photoresponsive Hydrogels Enable Surface-Mediated Gene Delivery and Light-Induced Reversible Cell Adhesion/Detachment. Langmuir, 2014, 30, 11823-11832.	3.5	58
115	Mg/N double doping strategy to fabricate extremely high luminescent carbon dots for bioimaging. RSC Advances, 2014, 4, 3201-3205.	3.6	163
116	Surface passivated carbon nanodots prepared by microwave assisted pyrolysis: effect of carboxyl group in precursors on fluorescence properties. RSC Advances, 2014, 4, 18818-18826.	3.6	36
117	Water-soluble and phosphorus-containing carbon dots with strong green fluorescence for cell labeling. Journal of Materials Chemistry B, 2014, 2, 46-48.	5.8	224
118	Gene-modified cell detachment on photoresponsive hydrogels strengthened through hydrogen bonding. Acta Biomaterialia, 2014, 10, 2529-2538.	8.3	29
119	Introducing primary and tertiary amino groups into a neutral polymer: A simple way to fabricating highly efficient nonviral vectors for gene delivery. Journal of Applied Polymer Science, 2014, 131, .	2.6	3
120	Controlled Heterogeneous Stem Cell Differentiation on a Shape Memory Hydrogel Surface. Scientific Reports, 2014, 4, 5815.	3.3	43
121	Cyclodextrin-cross-linked diaminotriazine-based hydrogen bonding strengthened hydrogels for drug and reverse gene delivery. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 1869-1882.	3.5	14
122	Fenton reaction-initiated formation of biocompatible injectable hydrogels for cell encapsulation. Journal of Materials Chemistry B, 2013, 1, 3932.	5.8	16
123	Enhanced gene delivery by chitosan-disulfide-conjugated LMW-PEI for facilitating osteogenic differentiation. Acta Biomaterialia, 2013, 9, 6694-6703.	8.3	65
124	Fabrication of a shape memory hydrogel based on imidazoleâ€"zinc ion coordination for potential cell-encapsulating tubular scaffold application. Soft Matter, 2013, 9, 132-137.	2.7	108
125	Combining magnetic field/temperature dual stimuli to significantly enhance gene transfection of nonviral vectors. Journal of Materials Chemistry B, 2013, 1, 43-51.	5.8	17
126	Double Hydrogenâ€Bonding pHâ€Sensitive Hydrogels Retaining Highâ€Strengths Over a Wide pH Range. Macromolecular Rapid Communications, 2013, 34, 63-68.	3.9	74

#	Article	IF	Citations
127	A systemic gene vector constructed by zwitterionic polymer modified low molecular weight PEI. Reactive and Functional Polymers, 2013, 73, 993-1000.	4.1	17
128	Intermolecular hydrogen bonding strategy to fabricate mechanically strong hydrogels with high elasticity and fatigue resistance. Soft Matter, 2013, 9, 6331.	2.7	89
129	Stable gene transfection mediated by polysulfobetaine/PDMAEMA diblock copolymer in salted medium. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 330-343.	3.5	6
130	ZnO quantum dots-embedded collagen/polyanion composite hydrogels with integrated functions of degradation tracking/inhibition and gene delivery. Journal of Materials Chemistry, 2012, 22, 512-519.	6.7	22
131	PDMAEMA-b-polysulfobetaine brushes-modified $\hat{l}\mu$ -polylysine as a serum-resistant vector for highly efficient gene delivery. Journal of Materials Chemistry, 2012, 22, 23576.	6.7	19
132	Revisiting differences in the thermoresponsive behavior of PNIPAAm and PMEO2MA aqueous solutions. RSC Advances, 2012, 2, 2422.	3.6	10
133	A facile and versatile approach to biocompatible "fluorescent polymers―from polymerizable carbon nanodots. Chemical Communications, 2012, 48, 10431.	4.1	123
134	Zinc ion-triggered two-way macro-/microscopic shape changing and memory effects in high strength hydrogels with pre-programmed unilateral patterned surfaces. Soft Matter, 2012, 8, 6846.	2.7	51
135	Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chemical Communications, 2012, 48, 7955.	4.1	830
136	The biocompatibility of fatty acid modified dextran-agmatine bioconjugate gene delivery vector. Biomaterials, 2012, 33, 604-613.	11.4	72
137	Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials, 2012, 33, 3604-3613.	11.4	664
138	An inhalable \hat{I}^2 2-adrenoceptor ligand-directed guanidinylated chitosan carrier for targeted delivery of siRNA to lung. Journal of Controlled Release, 2012, 162, 28-36.	9.9	70
139	High-strength hydrogel as a reusable adsorbent of copper ions. Journal of Hazardous Materials, 2012, 213-214, 258-264.	12.4	33
140	Zinc Ion Uniquely Induced Triple Shape Memory Effect of Dipole–Dipole Reinforced Ultraâ€High Strength Hydrogels. Macromolecular Rapid Communications, 2012, 33, 225-231.	3.9	111
141	Cationic polymer brush grafted-nanodiamond via atom transfer radical polymerization for enhanced gene delivery and bioimaging. Journal of Materials Chemistry, 2011, 21, 7755.	6.7	88
142	Construction of an ultrahigh strength hydrogel with excellent fatigue resistance based on strong dipole–dipole interaction. Soft Matter, 2011, 7, 2825.	2.7	106
143	One-step synthesis of surface passivated carbon nanodots by microwave assisted pyrolysis for enhanced multicolor photoluminescence and bioimaging. Journal of Materials Chemistry, 2011, 21, 13163.	6.7	300
144	Octaarginine-modified chitosan as a nonviral gene delivery vector: properties and in vitro transfection efficiency. Journal of Nanoparticle Research, 2011, 13, 693-702.	1.9	15

#	Article	IF	Citations
145	Improving transfection of human pulmonary epithelial cells by doping LMWâ€PElâ€∢i>g∢/i>â€chitosan with βâ€estradiol. Journal of Applied Polymer Science, 2011, 121, 874-882.	2.6	2
146	Guanidinylation: A simple way to fabricate cell penetrating peptide analogueâ€modified chitosan vector for enhanced gene delivery. Journal of Applied Polymer Science, 2011, 121, 3569-3578.	2.6	37
147	Enhanced gene transfection and serum stability of polyplexes by PDMAEMA-polysulfobetaine diblock copolymers. Biomaterials, 2011, 32, 628-638.	11.4	127
148	Robust MeO2MA/vinyl-4,6-diamino-1,3,5-triazine copolymer hydrogels-mediated reverse gene transfection and thermo-induced cell detachment. Biomaterials, 2011, 32, 1943-1949.	11.4	52
149	Local gene delivery via endovascular stents coated with dodecylated chitosan–plasmid DNA nanoparticles. International Journal of Nanomedicine, 2010, 5, 1095.	6.7	41
150	Temperature-tuned DNA condensation and gene transfection by PEI-g-(PMEO2MA-b-PHEMA) copolymer-based nonviral vectors. Biomaterials, 2010, 31, 144-155.	11.4	65
151	ZnO QD@PMAA-co-PDMAEMA nonviral vector for plasmid DNA delivery and bioimaging. Biomaterials, 2010, 31, 3087-3094.	11.4	130
152	Highâ€Strength Hydrogels with Integrated Functions of Hâ€bonding and Thermoresponsive Surfaceâ€Mediated Reverse Transfection and Cell Detachment. Advanced Materials, 2010, 22, 2652-2656.	21.0	122
153	Redox-cleavable star cationic PDMAEMA by arm-first approach of ATRP as a nonviral vector for gene delivery. Biomaterials, 2010, 31, 559-569.	11.4	112
154	Regeneration of functional nerves within full thickness collagen–phosphorylcholine corneal substitute implants in guinea pigs. Biomaterials, 2010, 31, 2770-2778.	11.4	65
155	Fast thermoresponsive BAB-type HEMA/NIPAAm triblock copolymer solutions for embolization of abnormal blood vessels. Journal of Materials Science: Materials in Medicine, 2009, 20, 967-974.	3.6	13
156	Collagen–phosphorylcholine interpenetrating network hydrogels as corneal substitutes. Biomaterials, 2009, 30, 1551-1559.	11.4	171
157	Synthetic neoglycopolymer-recombinant human collagen hybrids as biomimetic crosslinking agents in corneal tissue engineering. Biomaterials, 2009, 30, 5403-5408.	11.4	54
158	Alginate microsphere-collagen composite hydrogel for ocular drug delivery and implantation. Journal of Materials Science: Materials in Medicine, 2008, 19, 3365-3371.	3.6	103
159	Study on cellular internalization of poly(vinyldiaminotriazine)-based hydrogen bonding type non-viral transgene vector. Science Bulletin, 2008, 53, 2307-2314.	9.0	8
160	Recombinant human collagen for tissue engineered corneal substitutes. Biomaterials, 2008, 29, 1147-1158.	11.4	202
161	Improved transfection efficiency of CS/DNA complex by co-transfected chitosanase gene. International Journal of Pharmaceutics, 2008, 352, 302-308.	5.2	15
162	Degradable Disulfide Core-Cross-Linked Micelles as a Drug Delivery System Prepared from Vinyl Functionalized Nucleosides via the RAFT Process. Biomacromolecules, 2008, 9, 3321-3331.	5.4	156

#	Article	IF	Citations
163	Effect of Block Order of ABA―and BABâ€Type NIPAAm/HEMA Triblock Copolymers on Thermoresponsive Behavior of Solutions. Macromolecular Chemistry and Physics, 2007, 208, 1773-1781.	2.2	65
164	Guanidinylated allylamine-N-isopropylacrylamide copolymer nonviral transgene vectors. International Journal of Pharmaceutics, 2007, 331, 116-122.	5.2	20
165	Enhancement of transfection efficiency for HeLa cells via incorporating arginine moiety into chitosan. Science Bulletin, 2007, 52, 3207-3215.	1.7	11
166	A study of thermoresponsive poly(N-isopropylacrylamide)/polyarginine bioconjugate non-viral transgene vectors. Biomaterials, 2006, 27, 4984-4992.	11.4	55
167	Preparation and characterization of biocompatible poly(L-lactic acid)/gelatin blend membrane. Journal of Applied Polymer Science, 2006, 101, 269-276.	2.6	13
168	N-Isopropylacrylamide/2-Hydroxyethyl Methacrylate Star Diblock Copolymers: Synthesis and Thermoresponsive Behavior. Macromolecular Chemistry and Physics, 2006, 207, 2329-2335.	2.2	34
169	An investigation on the physicochemical properties of chitosan/DNA polyelectrolyte complexes. Biomaterials, 2005, 26, 2705-2711.	11.4	233
170	A new thermosensitive polymer as nonadhesive liquid embolism material. Current Applied Physics, 2005, 5, 497-500.	2.4	9
171	Thermosensitive N-isopropylacrylamide–N–propylacrylamide-vinyl pyrrolidone terpolymers: Synthesis, characterization and preliminary application as embolic agents. Biomaterials, 2005, 26, 7002-7011.	11.4	90
172	Toward an understanding of thermoresponsive transition behavior of hydrophobically modified N-isopropylacrylamide copolymer solution. Polymer, 2005, 46, 5268-5277.	3.8	66
173	A Thermoresponsive Chitosanâ^'NIPAAm/Vinyl Laurate Copolymer Vector for Gene Transfection. Bioconjugate Chemistry, 2005, 16, 972-980.	3.6	80
174	Anticoagulation activity of crosslinkedN-sulfofurfuryl chitosan membranes. Journal of Applied Polymer Science, 2004, 94, 53-56.	2.6	9
175	A rapid temperature-responsive sol–gel reversible poly(N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel. Biomaterials, 2004, 25, 3005-3012.	11.4	146
176	Self-aggregation behavior of alkylated chitosan and its effect on the release of a hydrophobic drug. Journal of Biomaterials Science, Polymer Edition, 2003, 14, 851-859.	3.5	29
177	Modulation of osteoblast function using poly(D,L-lactic acid) surfaces modified with alkylation derivative of chitosan. Journal of Biomaterials Science, Polymer Edition, 2002, 13, 53-66.	3.5	13