Hao Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1406338/publications.pdf Version: 2024-02-01

1	Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sensing of		
	Environment, 2021, 253, 112165.	11.0	436
2	The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth's forests and topography. Science of Remote Sensing, 2020, 1, 100002.	4.8	429
3	Retrieval of vertical LAI profiles over tropical rain forests using waveform lidar at La Selva, Costa Rica. Remote Sensing of Environment, 2012, 124, 242-250.	11.0	202
4	Deriving and validating Leaf Area Index (LAI) at multiple spatial scales through lidar remote sensing: A case study in Sierra National Forest, CA. Remote Sensing of Environment, 2014, 143, 131-141.	11.0	145
5	The GEDI Simulator: A Largeâ€Footprint Waveform Lidar Simulator for Calibration and Validation of Spaceborne Missions. Earth and Space Science, 2019, 6, 294-310.	2.6	140
6	Rapid, High-Resolution Forest Structure and Terrain Mapping over Large Areas using Single Photon Lidar. Scientific Reports, 2016, 6, 28277.	3.3	109
7	Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission. Remote Sensing of Environment, 2022, 270, 112845.	11.0	108
8	Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2640-2644.	7.1	99
9	Characterizing global forest canopy cover distribution using spaceborne lidar. Remote Sensing of Environment, 2019, 231, 111262.	11.0	79
10	Improved forest height estimation by fusion of simulated GEDI Lidar data and TanDEM-X InSAR data. Remote Sensing of Environment, 2019, 221, 621-634.	11.0	74
11	Neural network guided interpolation for mapping canopy height of China's forests by integrating GEDI and ICESat-2 data. Remote Sensing of Environment, 2022, 269, 112844.	11.0	68
12	Large-scale retrieval of leaf area index and vertical foliage profile from the spaceborne waveform lidar (GLAS/ICESat). Remote Sensing of Environment, 2014, 154, 8-18.	11.0	66
13	Voxel-Based Spatial Filtering Method for Canopy Height Retrieval from Airborne Single-Photon Lidar. Remote Sensing, 2016, 8, 771.	4.0	39
14	High-resolution mapping of aboveground biomass for forest carbon monitoring system in the Tri-State region of Maryland, Pennsylvania and Delaware, USA. Environmental Research Letters, 2019, 14, 095002.	5.2	38
15	Distinguishing vegetation types with airborne waveform lidar data in a tropical forest-savanna mosaic: A case study in Lopé National Park, Gabon. Remote Sensing of Environment, 2018, 216, 626-634.	11.0	34
16	Beyond MRV: high-resolution forest carbon modeling for climate mitigation planning over Maryland, USA. Environmental Research Letters, 2019, 14, 045013.	5.2	34
17	The NASA AfriSAR campaign: Airborne SAR and lidar measurements of tropical forest structure and biomass in support of current and future space missions. Remote Sensing of Environment, 2021, 264, 112533.	11.0	33
18	Local discrepancies in continental scale biomass maps: a case study over forested and non-forested landscapes in Maryland, USA. Carbon Balance and Management, 2015, 10, 19.	3.2	31

Hao Tang

#	Article	IF	CITATIONS
19	Evaluating the potential of fullâ€waveform lidar for mapping panâ€ŧropical tree species richness. Global Ecology and Biogeography, 2020, 29, 1799-1816.	5.8	31
20	Vapor Pressure Deficit and Sunlight Explain Seasonality of Leaf Phenology and Photosynthesis Across Amazonian Evergreen Broadleaved Forest. Global Biogeochemical Cycles, 2021, 35, e2020GB006893.	4.9	31
21	A comparison of foliage profiles in the Sierra National Forest obtained with a full-waveform under-canopy EVI lidar system with the foliage profiles obtained with an airborne full-waveform LVIS lidar system. Remote Sensing of Environment, 2013, 136, 330-341.	11.0	30
22	Large loss and rapid recovery of vegetation cover and aboveground biomass over forest areas in Australia during 2019–2020. Remote Sensing of Environment, 2022, 278, 113087.	11.0	26
23	From small-scale forest structure to Amazon-wide carbon estimates. Nature Communications, 2019, 10, 5088.	12.8	25
24	Detecting Change in Forest Structure with Simulated GEDI Lidar Waveforms: A Case Study of the Hemlock Woolly Adelgid (HWA; Adelges tsugae) Infestation. Remote Sensing, 2020, 12, 1304.	4.0	25
25	Definition and measurement of tree cover: A comparative analysis of field-, lidar- and landsat-based tree cover estimations in the Sierra national forests, USA. Agricultural and Forest Meteorology, 2019, 268, 258-268.	4.8	24
26	Characterizing leaf area index (LAI) and vertical foliage profile (VFP) over the United States. Biogeosciences, 2016, 13, 239-252.	3.3	23
27	Exploring the relation between remotely sensed vertical canopy structure and tree species diversity in Gabon. Environmental Research Letters, 2019, 14, 094013.	5.2	20
28	A Lidar-Radar Framework to Assess the Impact of Vertical Forest Structure on Interferometric Coherence. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9, 5830-5841.	4.9	13
29	High-resolution forest carbon mapping for climate mitigation baselines over the RGGI region, USA. Environmental Research Letters, 2021, 16, 035011.	5.2	12
30	High-resolution forest carbon modelling for climate mitigation planning over the RGGI region, USA. Environmental Research Letters, 2021, 16, 045014.	5.2	11
31	Challenges to aboveground biomass prediction from waveform lidar. Environmental Research Letters, 2021, 16, 125013.	5.2	9
32	ACCURACY ASSESSMENT OF LANDSAT-DERIVED CONTINUOUS FIELDS OF TREE COVER PRODUCTS USING AIRBORNE LIDAR DATA IN THE EASTERN UNITED STATES. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XL-7/W4, 241-246.	0.2	7
33	Global evaluation of the Ecosystem Demography model (ED v3.0). Geoscientific Model Development, 2022, 15, 1971-1994.	3.6	7
34	Context and future directions for integrating forest carbon into sub-national climate mitigation planning in the RGGI region of the U.S Environmental Research Letters, 2021, 16, 063001.	5.2	6
35	Annual Maps of Forests in Australia from Analyses of Microwave and Optical Images with FAO Forest Definition. Journal of Remote Sensing, 2021, 2021, .	6.7	3