Francesca Greco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1405555/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combination therapy: Opportunities and challenges for polymer–drug conjugates as anticancer nanomedicines. Advanced Drug Delivery Reviews, 2009, 61, 1203-1213.	13.7	596
2	Flavonoids as prospective compounds for anti-cancer therapy. International Journal of Biochemistry and Cell Biology, 2013, 45, 2821-2831.	2.8	428
3	Polymer Therapeutics Designed for a Combination Therapy of Hormone-Dependent Cancer. Angewandte Chemie - International Edition, 2005, 44, 4061-4066.	13.8	181
4	Self-immolative linkers in polymeric delivery systems. Polymer Chemistry, 2011, 2, 773-790.	3.9	131
5	Parameters Affecting the Enhanced Permeability and Retention Effect: The Need for Patient Selection. Journal of Pharmaceutical Sciences, 2017, 106, 3179-3187.	3.3	110
6	Polymer-drug conjugates: current status and future trends. Frontiers in Bioscience - Landmark, 2008, 13, 2744.	3.0	99
7	Investigating the mechanism of enhanced cytotoxicity of HPMA copolymer–Dox–AGM in breast cancer cells. Journal of Controlled Release, 2007, 117, 28-39.	9.9	85
8	An adhesive elastomeric supramolecular polyurethane healable at body temperature. Chemical Science, 2016, 7, 4291-4300.	7.4	65
9	Arginine-Containing Surfactant-Like Peptides: Interaction with Lipid Membranes and Antimicrobial Activity. Biomacromolecules, 2018, 19, 2782-2794.	5.4	54
10	Metal complexes of flavonoids: their synthesis, characterization and enhanced antioxidant and anticancer activities. Future Medicinal Chemistry, 2019, 11, 2845-2867.	2.3	49
11	Exploring quercetin and luteolin derivatives as antiangiogenic agents. European Journal of Medicinal Chemistry, 2015, 97, 259-274.	5.5	47
12	Janus PEG-Based Dendrimers for Use in Combination Therapy: Controlled Multi-Drug Loading and Sequential Release. Biomacromolecules, 2013, 14, 564-574.	5.4	46
13	Polymerâ^'Drug Conjugates for Combination Anticancer Therapy: Investigating the Mechanism of Action. Journal of Medicinal Chemistry, 2009, 52, 6499-6502.	6.4	43
14	Self-Assembly, Tunable Hydrogel Properties, and Selective Anti-Cancer Activity of a Carnosine-Derived Lipidated Peptide. ACS Applied Materials & Interfaces, 2019, 11, 33573-33580.	8.0	42
15	Ruthenium-conjugated chrysin analogues modulate platelet activity, thrombus formation and haemostasis with enhanced efficacy. Scientific Reports, 2017, 7, 5738.	3.3	41
16	Impact of the Enhanced Permeability and Retention (EPR) Effect and Cathepsins Levels on the Activity of Polymer-Drug Conjugates. Polymers, 2014, 6, 2186-2220.	4.5	34
17	HPMA copolymer–aminoglutethimide conjugates inhibit aromatase in MCF-7 cell lines. Journal of Drug Targeting, 2005, 13, 459-470.	4.4	33
18	Polysialic acid as a drug carrier: evaluation of a new polysialic acid–epirubicin conjugate and its comparison against established drug carriers. Polvmer Chemistry, 2013. 4. 1600-1609.	3.9	33

FRANCESCA GRECO

#	Article	IF	CITATIONS
19	Increasing doxorubicin activity against breast cancer cells using <scp>PPAR</scp> γâ€ligands and by exploiting circadian rhythms. British Journal of Pharmacology, 2013, 169, 1178-1188.	5.4	31
20	Self-Assembly, Antimicrobial Activity, and Membrane Interactions of Arginine-Capped Peptide Bola-Amphiphiles. ACS Applied Bio Materials, 2019, 2, 2208-2218.	4.6	30
21	Targeted Activation of Toll-Like Receptors: Conjugation of a Toll-Like Receptor 7 Agonist to a Monoclonal Antibody Maintains Antigen Binding and Specificity. Bioconjugate Chemistry, 2015, 26, 1743-1752.	3.6	29
22	Novel synthesised flavone derivatives provide significant insight into the structural features required for enhanced anti-proliferative activity. RSC Advances, 2016, 6, 64544-64556.	3.6	26
23	Impact of specific functional groups in flavonoids on the modulation of platelet activation. Scientific Reports, 2018, 8, 9528.	3.3	24
24	Restructuring of Lipid Membranes by an Arginine-Capped Peptide Bolaamphiphile. Langmuir, 2019, 35, 1302-1311.	3.5	20
25	Feasibility of polymer-drug conjugates for non-cancer applications. Current Opinion in Colloid and Interface Science, 2017, 31, 51-66.	7.4	16
26	Synthesis and Evaluation of Novel Boron-Containing Complexes of Potential Use for the Selective Treatment of Malignant Melanoma. Journal of Medicinal Chemistry, 2008, 51, 6604-6608.	6.4	14
27	Enzymatically Triggered, Isothermally Responsive Polymers: Reprogramming Poly(oligoethylene) Tj ETQq1 1 0.784	314 rgBT	Qyerlock 1(
28	Antiangiogenic Activity of Flavonoids: A Systematic Review and Meta-Analysis. Molecules, 2020, 25, 4712.	3.8	13
29	Synthesis and Biological Evaluation of a Polyglutamic Acid–Dopamine Conjugate: A New Antiangiogenic Agent. Journal of Medicinal Chemistry, 2011, 54, 5255-5259.	6.4	12
30	Synthesis and Biological In Vitro Evaluation of Novel PEGâ^'Psoralen Conjugates. Biomacromolecules, 2006, 7, 3534-3541.	5.4	10
31	Thioflavones as novel neuroprotective agents. Bioorganic and Medicinal Chemistry, 2016, 24, 5513-5520.	3.0	10
32	A novel PEG–haloperidol conjugate with a non-degradable linker shows the feasibility of using polymer–drug conjugates in a non-prodrug fashion. Polymer Chemistry, 2016, 7, 7204-7210.	3.9	8
33	Self-Assembly of Telechelic Tyrosine End-Capped PEO Star Polymers in Aqueous Solution. Biomacromolecules, 2018, 19, 167-177.	5.4	8
34	Conjugation of haloperidol to PEG allows peripheral localisation of haloperidol and eliminates CNS extrapyramidal effects. Journal of Controlled Release, 2020, 322, 227-235.	9.9	8
35	New pyridine and chromene scaffolds as potent vasorelaxant and anticancer agents. RSC Advances, 2021, 11, 29441-29452.	3.6	6
36	Conjugation to PEG as a Strategy to Limit the Uptake of Drugs by the Placenta: Potential Applications for Drug Administration in Pregnancy. Molecular Pharmaceutics, 2021, , .	4.6	6

FRANCESCA GRECO

#	Article	IF	CITATIONS
37	Multifunctional, Biocompatible, Nonâ€peptidic Hydrogels: from Water Purification to Drug Delivery. ChemistrySelect, 2016, 1, 1641-1649.	1.5	5
38	Biophysical studies in polymer therapeutics: the interactions of anionic and cationic PAMAM dendrimers with lipid monolayers. Journal of Drug Targeting, 2017, 25, 910-918.	4.4	5
39	Modelling the use of variable rate intravenous insulin infusions in hospitals by comparing Work as Done with Work as Imagined. Research in Social and Administrative Pharmacy, 2021, , .	3.0	4
40	Emerging nanomedicine applications and manufacturing: progress and challenges. Nanomedicine, 2016, 11, 577-580.	3.3	3
41	Detailed analysis of â€~work as imagined' in the use of intravenous insulin infusions in a hospital: a hierarchical task analysis. BMJ Open, 2021, 11, e041848.	1.9	1
42	Polymer-Drug Conjugates. , 2013, , 159-182.		0
43	Using video reflexive ethnography to explore the use of variable rate intravenous insulin infusions. BMC Health Services Research, 2022, 22, 545.	2.2	0