John F Atkins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1405088/publications.pdf

Version: 2024-02-01

203 papers 13,209 citations

19608 61 h-index 29081 104 g-index

209 all docs 209 docs citations

209 times ranked 8996 citing authors

#	Article	IF	CITATIONS
1	Immune cells alter genetic decoding in cancer. Nature, 2022, 603, 582-583.	13.7	2
2	Evaluating ribosomal frameshifting in CCR5 mRNA decoding. Nature, 2022, 604, E16-E23.	13.7	18
3	Maximum depth sequencing reveals an ON/OFF replication slippage switch and apparent in vivo selection for bifidobacterial pilus expression. Scientific Reports, 2022, 12, .	1.6	2
4	Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome. Science, 2021, 372, 1306-1313.	6.0	165
5	From Recoding to Peptides for MHC Class I Immune Display: Enriching Viral Expression, Virus Vulnerability and Virus Evasion. Viruses, 2021, 13, 1251.	1.5	3
6	Tissue-specific dynamic codon redefinition in $\langle i \rangle$ Drosophila $\langle i \rangle$. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	10
7	Unusually efficient CUG initiation of an overlapping reading frame in <i>POLG</i> mRNA yields novel protein POLGARF. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24936-24946.	3.3	30
8	Polysomes Bypass a 50-Nucleotide Coding Gap Less Efficiently Than Monosomes Due to Attenuation of a 5′ mRNA Stem–Loop and Enhanced Drop-off. Journal of Molecular Biology, 2020, 432, 4369-4387.	2.0	5
9	The energy landscape of â^1 ribosomal frameshifting. Science Advances, 2020, 6, eaax6969.	4.7	51
10	Stop codon readthrough contexts influence reporter expression differentially depending on the presence of an IRES. Wellcome Open Research, 2020, 5, 221.	0.9	1
11	Processive Recoding and MetazoanÂEvolution of SelenoproteinÂP: Up to 132 UGAs in Molluscs. Journal of Molecular Biology, 2019, 431, 4381-4407.	2.0	18
12	Polyamine Control of Translation Elongation Regulates Start Site Selection on Antizyme Inhibitor mRNA via Ribosome Queuing. Molecular Cell, 2018, 70, 254-264.e6.	4.5	112
13	Stop codon readthrough generates a C-terminally extended variant of the human vitamin D receptor with reduced calcitriol response. Journal of Biological Chemistry, 2018, 293, 4434-4444.	1.6	59
14	AMD1 mRNA employs ribosome stalling as a mechanism for molecular memory formation. Nature, 2018, 553, 356-360.	13.7	63
15	Pyrrolysine in archaea: a 22nd amino acid encoded through a genetic code expansion. Emerging Topics in Life Sciences, 2018, 2, 607-618.	1.1	22
16	Culmination of a half-century quest reveals insight into mutant tRNA-mediated frameshifting after tRNA departure from the decoding site. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11121-11123.	3.3	2
17	Translational autoregulation of BZW1 and BZW2 expression by modulating the stringency of start codon selection. PLoS ONE, 2018, 13, e0192648.	1.1	20
18	A [Cu]rious Ribosomal Profiling Pattern Leads to the Discovery of Ribosomal Frameshifting in the Synthesis of a Copper Chaperone. Molecular Cell, 2017, 65, 203-204.	4.5	4

#	Article	IF	CITATIONS
19	Avoidance of reporter assay distortions from fused dual reporters. Rna, 2017, 23, 1285-1289.	1.6	63
20	Translation Initiation from Conserved Non-AUG Codons Provides Additional Layers of Regulation and Coding Capacity. MBio, $2017, 8, .$	1.8	25
21	Position-dependent termination and widespread obligatory frameshifting in Euplotes translation. Nature Structural and Molecular Biology, 2017, 24, 61-68.	3.6	56
22	Multiple RNA structures affect translation initiation and UGA redefinition efficiency during synthesis of selenoprotein P. Nucleic Acids Research, 2017, 45, 13004-13015.	6.5	18
23	Stimulation of reverse transcriptase generated cDNAs with specific indels by template RNA structure: retrotransposon, dNTP balance, RT-reagent usage. Nucleic Acids Research, 2017, 45, 10143-10155.	6.5	7
24	ASXL gain-of-function truncation mutants: defective and dysregulated forms of a natural ribosomal frameshifting product?. Biology Direct, 2017, 12, 24.	1.9	12
25	Specific reverse transcriptase slippage at the HIV ribosomal frameshift sequence: potential implications for modulation of GagPol synthesis. Nucleic Acids Research, 2017, 45, 10156-10167.	6.5	9
26	Human selenoprotein P and S variant mRNAs with different numbers of SECIS elements and inferences from mutant mice of the roles of multiple SECIS elements. Open Biology, 2016, 6, 160241.	1.5	12
27	Systematic analysis of the <i>PTEN</i> 5′ leader identifies a major AUU initiated proteoform. Open Biology, 2016, 6, 150203.	1.5	39
28	Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Research, 2016, 44, gkw530.	6.5	238
29	An Expanded CAG Repeat in Huntingtin Causes +1 Frameshifting. Journal of Biological Chemistry, 2016, 291, 18505-18513.	1.6	19
30	Novel Ciliate Genetic Code Variants Including the Reassignment of All Three Stop Codons to Sense Codons in (i) Condylostoma magnum (i). Molecular Biology and Evolution, 2016, 33, 2885-2889.	3.5	100
31	A Nascent Peptide Signal Responsive to Endogenous Levels of Polyamines Acts to Stimulate Regulatory Frameshifting on Antizyme mRNA. Journal of Biological Chemistry, 2015, 290, 17863-17878.	1.6	21
32	Productive mRNA stem loop-mediated transcriptional slippage: Crucial features in common with intrinsic terminators. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1984-93.	3.3	20
33	Augmented genetic decoding: global, local and temporal alterations of decoding processes and codon meaning. Nature Reviews Genetics, 2015, 16, 517-529.	7.7	75
34	Coupling of mRNA Structure Rearrangement to Ribosome Movement during Bypassing of Non-coding Regions. Cell, 2015, 163, 1267-1280.	13.5	42
35	Transcriptional slippage in the positiveâ€sense <scp>RNA</scp> virus family <i>Potyviridae</i> EMBO Reports, 2015, 16, 995-1004.	2.0	192
36	Evidence of efficient stop codon readthrough in four mammalian genes. Nucleic Acids Research, 2014, 42, 8928-8938.	6.5	184

#	Article	IF	CITATIONS
37	Transcriptional Frameshifting Rescues Citrobacter rodentium Type VI Secretion by the Production of Two Length Variants from the Prematurely Interrupted tssM Gene. PLoS Genetics, 2014, 10, e1004869.	1.5	14
38	Analysis of tetra- and hepta-nucleotides motifs promoting -1 ribosomal frameshifting in Escherichia coli. Nucleic Acids Research, 2014, 42, 7210-7225.	6.5	25
39	Cryptic MHC class I-binding peptides are revealed by aminoglycoside-induced stop codon read-through into the $3\hat{a}\in^2$ UTR. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5670-5675.	3.3	43
40	Human DNA tumor viruses generate alternative reading frame proteins through repeat sequence recoding. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4342-E4349.	3.3	18
41	High-efficiency translational bypassing of non-coding nucleotides specified by mRNA structure and nascent peptide. Nature Communications, 2014, 5, 4459.	5.8	28
42	Sepp1UF forms are N-terminal selenoprotein P truncations that have peroxidase activity when coupled with thioredoxin reductase-1. Free Radical Biology and Medicine, 2014, 69, 67-76.	1.3	37
43	Antibiotic re-frames decoding. Nature, 2013, 503, 478-479.	13.7	3
44	rRNA:mRNA pairing alters the length and the symmetry of mRNA-protected fragments in ribosome profiling experiments. Bioinformatics, 2013, 29, 1488-1491.	1.8	50
45	Identification of the nature of reading frame transitions observed in prokaryotic genomes. Nucleic Acids Research, 2013, 41, 6514-6530.	6.5	26
46	Observation of dually decoded regions of the human genome using ribosome profiling data. Genome Research, 2012, 22, 2219-2229.	2.4	169
47	Efficient â^2 frameshifting by mammalian ribosomes to synthesize an additional arterivirus protein. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2920-8.	3.3	231
48	Production of Selenoprotein P (Sepp1) by Hepatocytes Is Central to Selenium Homeostasis. Journal of Biological Chemistry, 2012, 287, 40414-40424.	1.6	124
49	Stringency of start codon selection modulates autoregulation of translation initiation factor eIF5. Nucleic Acids Research, 2012, 40, 2898-2906.	6.5	99
50	Alternative reading frame selection mediated by a tRNA-like domain of an internal ribosome entry site. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E630-9.	3.3	54
51	Selenoprotein P (Sepp1) Synthesis by the Liver Protects against Selenium Deficiency. FASEB Journal, 2012, 26, 241.3.	0.2	0
52	Stimulation of stop codon readthrough: frequent presence of an extended 3′ RNA structural element. Nucleic Acids Research, 2011, 39, 6679-6691.	6.5	134
53	Translation Goes Global. Science, 2011, 334, 1509-1510.	6.0	14
54	Programmed ribosomal frameshifting in the expression of the regulator of intestinal stem cell proliferation, adenomatous polyposis coli (APC). RNA Biology, 2011, 8, 637-647.	1.5	16

#	Article	IF	Citations
55	A Pilot Study of Bacterial Genes with Disrupted ORFs Reveals a Surprising Profusion of Protein Sequence Recoding Mediated by Ribosomal Frameshifting and Transcriptional Realignment. Molecular Biology and Evolution, 2011, 28, 3195-3211.	3.5	43
56	The Interplay of mRNA Stimulatory Signals Required for AUU-Mediated Initiation and Programmed \hat{a} 1 Ribosomal Frameshifting in Decoding of Transposable Element IS <i>911</i> . Journal of Bacteriology, 2011, 193, 2735-2744.	1.0	12
57	Two groups of phenylalanine biosynthetic operon leader peptides genes: a high level of apparently incidental frameshifting in decoding Escherichia coli pheL. Nucleic Acids Research, 2011, 39, 3079-3092.	6.5	9
58	Ribosomal frameshifting into an overlapping gene in the 2B-encoding region of the cardiovirus genome. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1111-9.	3.3	67
59	Identification of evolutionarily conserved non-AUG-initiated N-terminal extensions in human coding sequences. Nucleic Acids Research, 2011, 39, 4220-4234.	6.5	195
60	Discovery of a small arterivirus gene that overlaps the GP5 coding sequence and is important for virus production. Journal of General Virology, 2011, 92, 1097-1106.	1.3	247
61	Recurrent Emergence of Catalytically Inactive Ornithine Decarboxylase Homologous Forms That Likely Have Regulatory Function. Journal of Molecular Evolution, 2010, 70, 289-302.	0.8	23
62	Evidence for ribosomal frameshifting and a novel overlapping gene in the genomes of insect-specific flaviviruses. Virology, 2010, 399, 153-166.	1.1	59
63	The Distinction Between Recoding and Codon Reassignment. Genetics, 2010, 185, 1535-1536.	1.2	19
64	A profusion of upstream open reading frame mechanisms in polyamine-responsive translational regulation. Nucleic Acids Research, 2010, 38, 353-359.	6.5	78
65	Initiation context modulates autoregulation of eukaryotic translation initiation factor 1 (eIF1). Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18056-18060.	3.3	125
66	NS1â \in 2 of Flaviviruses in the Japanese Encephalitis Virus Serogroup Is a Product of Ribosomal Frameshifting and Plays a Role in Viral Neuroinvasiveness. Journal of Virology, 2010, 84, 1641-1647.	1.5	150
67	Candidates in Astroviruses, Seadornaviruses, Cytorhabdoviruses and Coronaviruses for +1 frame overlapping genes accessed by leaky scanning. Virology Journal, 2010, 7, 17.	1.4	28
68	Recode-2: new design, new search tools, and many more genes. Nucleic Acids Research, 2010, 38, D69-D74.	6.5	59
69	Frameshifting in Alphaviruses: A Diversity of 3′ Stimulatory Structures. Journal of Molecular Biology, 2010, 397, 448-456.	2.0	52
70	Versatile Dual Reporter Gene Systems for Investigating Stop Codon Readthrough in Plants. PLoS ONE, 2009, 4, e7354.	1,1	8
71	A Gripping Tale of Ribosomal Frameshifting: Extragenic Suppressors of Frameshift Mutations Spotlight P-Site Realignment. Microbiology and Molecular Biology Reviews, 2009, 73, 178-210.	2.9	122
72	A case for a CUC-initiated coding sequence overlapping torovirus ORF1a and encoding a novel 30 kDa product. Virology Journal, 2009, 6, 136.	1.4	8

#	Article	IF	CITATIONS
73	A conserved predicted pseudoknot in the NS2A-encoding sequence of West Nile and Japanese encephalitis flaviviruses suggests NS1' may derive from ribosomal frameshifting. Virology Journal, 2009, 6, 14.	1.4	120
74	Bioinformatic evidence for a stem-loop structure 5'-adjacent to the IGR-IRES and for an overlapping gene in the bee paralysis dicistroviruses. Virology Journal, 2009, 6, 193.	1.4	29
75	Analysis of the coding potential of the partially overlapping 3' ORF in segment 5 of the plant fijiviruses. Virology Journal, 2009, 6, 32.	1.4	32
76	Evidence for a novel coding sequence overlapping the 5'-terminal ~90 codons of the Gill-associated and Yellow head okavirus envelope glycoprotein gene. Virology Journal, 2009, 6, 222.	1.4	4
77	Bioinformatic analysis suggests that a conserved ORF in the waikaviruses encodes an overlapping gene. Archives of Virology, 2008, 153, 1379-1383.	0.9	25
78	Translational bypassing without peptidyl-tRNA anticodon scanning of coding gap mRNA. EMBO Journal, 2008, 27, 2533-2544.	3 . 5	25
79	Foot and Mouth's Achilles' heel?. Nature Biotechnology, 2008, 26, 1335-1336.	9.4	2
80	Ornithine decarboxylase antizyme finder (OAF): Fast and reliable detection of antizymes with frameshifts in mRNAs. BMC Bioinformatics, 2008, 9, 178.	1.2	16
81	Discovery of frameshifting in Alphavirus 6K resolves a 20-year enigma. Virology Journal, 2008, 5, 108.	1.4	118
82	Bioinformatic analysis suggests that the Cypovirus 1 major core protein cistron harbours an overlapping gene. Virology Journal, 2008, 5, 62.	1.4	6
83	An overlapping essential gene in the Potyviridae. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5897-5902.	3.3	718
84	uORFs with unusual translational start codons autoregulate expression of eukaryotic ornithine decarboxylase homologs. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10079-10084.	3.3	90
85	Comparison of approaches for rational siRNA design leading to a new efficient and transparent method. Nucleic Acids Research, 2007, 35, e63-e63.	6.5	129
86	A case for "StopGo": Reprogramming translation to augment codon meaning of GGN by promoting unconventional termination (Stop) after addition of glycine and then allowing continued translation (Go). Rna, 2007, 13, 803-810.	1.6	104
87	The Selenium-rich C-terminal Domain of Mouse Selenoprotein P Is Necessary for the Supply of Selenium to Brain and Testis but Not for the Maintenance of Whole Body Selenium. Journal of Biological Chemistry, 2007, 282, 10972-10980.	1.6	94
88	Novel antizyme gene in Danio rerio expressed in brain and retina. Gene, 2007, 387, 87-92.	1.0	11
89	Ribosomal frameshifting in decoding antizyme mRNAs from yeast and protists to humans: close to 300 cases reveal remarkable diversity despite underlying conservation. Nucleic Acids Research, 2007, 35, 1842-1858.	6.5	114
90	Duality in the genetic code. Nature, 2007, 448, 1004-1005.	13.7	9

#	Article	IF	Citations
91	Diverse bacterial genomes encode an operon of two genes, one of which is an unusual class-I release factor that potentially recognizes atypical mRNA signals other than normal stop codons. Biology Direct, 2006, 1, 28.	1.9	25
92	Identification of Polymorphisms in the Hrb, GOPC, and Csnk2a2 Genes in Two Men With Globozoospermia. Journal of Andrology, 2006, 27, 11-15.	2.0	23
93	Identification of novel polymorphisms in the nuclear protein genes and their relationship with human sperm protamine deficiency and severe male infertility. Fertility and Sterility, 2006, 86, 1416-1422.	0.5	70
94	Identification of polymorphisms and balancing selection in the male infertility candidate gene, ornithine decarboxylase antizyme 3. BMC Medical Genetics, 2006, 7, 27.	2.1	13
95	Recoding in bacteriophages and bacterial IS elements. Trends in Genetics, 2006, 22, 174-181.	2.9	79
96	The potential role of ribosomal frameshifting in generating aberrant proteins implicated in neurodegenerative diseases. Rna, 2006, 12, 1149-1153.	1.6	20
97	ARFA: a program for annotating bacterial release factor genes, including prediction of programmed ribosomal frameshifting. Bioinformatics, 2006, 22, 2463-2465.	1.8	31
98	Sequencing and haplotype analysis of the Activator of CREM in the Testis (ACT) gene in populations of fertile and infertile males. Molecular Human Reproduction, 2006, 12, 257-262.	1.3	21
99	Evolutionary specialization of recoding: Frameshifting in the expression of S. cerevisiae antizyme mRNA is via an atypical antizyme shift site but is still +1. Rna, 2006, 12, 332-337.	1.6	19
100	Epitopes Derived by Incidental Translational Frameshifting Give Rise to a Protective CTL Response. Journal of Immunology, 2006, 176, 6928-6934.	0.4	41
101	Polyamine Analogs with Xylene Rings Induce Antizyme Frameshifting, Reduce ODC Activity, and Deplete Cellular Polyamines. Journal of Biochemistry, 2006, 140, 657-666.	0.9	12
102	A Functional –1 Ribosomal Frameshift Signal in the Human Paraneoplastic Ma3 Gene. Journal of Biological Chemistry, 2006, 281, 7082-7088.	1.6	67
103	Recoding elements located adjacent to a subset of eukaryal selenocysteine-specifying UGA codons. EMBO Journal, 2005, 24, 1596-1607.	3.5	84
104	Expression Levels Influence Ribosomal Frameshifting at the Tandem Rare Arginine Codons AGG_AGG and AGA_AGA in Escherichia coli. Journal of Bacteriology, 2005, 187, 4023-4032.	1.0	45
105	Pyrrolysine and Selenocysteine Use Dissimilar Decoding Strategies. Journal of Biological Chemistry, 2005, 280, 20740-20751.	1.6	104
106	Screening the SPO11 and EIF5A2 genes in a population of infertile men. Fertility and Sterility, 2005, 84, 758-760.	0.5	31
107	Programmed ribosomal frameshifting in decoding the SARS-CoV genome. Virology, 2005, 332, 498-510.	1.1	201
108	P-site Pairing Subtleties Revealed by the Effects of Different tRNAs on Programmed Translational Bypassing where Anticodon Re-pairing to mRNA is Separated from Dissociation. Journal of Molecular Biology, 2005, 345, 39-49.	2.0	16

#	Article	IF	Citations
109	Polyamine sensing during antizyme mRNA programmed frameshifting. Biochemical and Biophysical Research Communications, 2005, 338, 1478-1489.	1.0	39
110	Transcriptional slippage in bacteria: distribution in sequenced genomes and utilization in IS element gene expression. Genome Biology, 2005, 6, R25.	13.9	59
111	Efficient stimulation of site-specific ribosome frameshifting by antisense oligonucleotides. Rna, 2004, 10, 1653-1661.	1.6	47
112	P-site tRNA is a crucial initiator of ribosomal frameshifting. Rna, 2004, 10, 221-230.	1.6	82
113	â^'1 Frameshifting at a CGA AAG Hexanucleotide Site Is Required for Transposition of Insertion Sequence IS1222. Journal of Bacteriology, 2004, 186, 3274-3277.	1.0	12
114	Factors That Influence Selection of Coding Resumption Sites in Translational Bypassing. Journal of Biological Chemistry, 2004, 279, 11081-11087.	1.6	30
115	A cryptic lysis gene near the start of the $Q\hat{1}^2$ replicase gene in the +1 frame. Genes To Cells, 2004, 9, 877-889.	0.5	3
116	Identification of regions in multiple sequence alignments thermodynamically suitable for targeting by consensus oligonucleotides: application to HIV genome. BMC Bioinformatics, 2004, 5, 44.	1.2	3
117	Identification of a New Antizyme mRNA +1 Frameshifting Stimulatory Pseudoknot in a Subset of Diverse Invertebrates and its Apparent Absence in Intermediate Species. Journal of Molecular Biology, 2004, 339, 495-504.	2.0	25
118	Sequences that direct significant levels of frameshifting are frequent in coding regions of Escherichia coli. EMBO Journal, 2003, 22, 5941-5950.	3.5	74
119	Maintenance of the correct open reading frame by the ribosome. EMBO Reports, 2003, 4, 499-504.	2.0	38
120	Programmed translational -1 frameshifting on hexanucleotide motifs and the wobble properties of tRNAs. EMBO Journal, 2003, 22, 4770-4778.	3.5	55
121	Translational recoding signals between gag and pol in diverse LTR retrotransposons. Rna, 2003, 9, 1422-1430.	1.6	80
122	RECODE 2003. Nucleic Acids Research, 2003, 31, 87-89.	6.5	64
123	Deletion of Selenoprotein P Alters Distribution of Selenium in the Mouse. Journal of Biological Chemistry, 2003, 278, 13640-13646.	1.6	401
124	Predominance of six different hexanucleotide recoding signals 3' of read-through stop codons. Nucleic Acids Research, 2002, 30, 2011-2017.	6.5	110
125	Computational identification of putative programmed translational frameshift sites. Bioinformatics, 2002, 18, 1046-1053.	1.8	72
126	Artificial neural network prediction of antisense oligodeoxynucleotide activity. Nucleic Acids Research, 2002, 30, 4295-4304.	6.5	24

#	Article	IF	Citations
127	Recoding: translational bifurcations in gene expression. Gene, 2002, 286, 187-201.	1.0	193
128	BIOCHEMISTRY: The 22nd Amino Acid. Science, 2002, 296, 1409-1410.	6.0	100
129	Influence of the stacking potential of the base 3??? of tandem shift codons on ???1 ribosomal frameshifting used for gene expression. Rna, 2002, 8, 16-28.	1.6	40
130	Comparative studies of frameshifting and nonframeshifting RNA pseudoknots: A mutational and NMR investigation of pseudoknots derived from the bacteriophage T2 gene 32 mRNA and the retroviral gag-pro frameshift site. Rna, 2002, 8, 981-996.	1.6	29
131	Release factor 2 frameshifting sites in different bacteria. EMBO Reports, 2002, 3, 373-377.	2.0	79
132	Analysis of the roles of tRNA structure, ribosomal protein L9, and the bacteriophage T4 gene 60 bypassing signals during ribosome slippage on mRNA. Journal of Molecular Biology, 2001, 309, 1029-1048.	2.0	74
133	Drop-off during ribosome hopping 1 1Edited by M. Gottesman. Journal of Molecular Biology, 2001, 311, 445-452.	2.0	32
134	Cell culture analysis of the regulatory frameshift event required for the expression of mammalian antizymes. Genes To Cells, 2001, 6, 931-941.	0.5	32
135	mRNA readout at 40. Nature, 2001, 414, 693-693.	13.7	3
136	Overriding Standard Decoding: Implications of Recoding for Ribosome Function and Enrichment of Gene Expression. Cold Spring Harbor Symposia on Quantitative Biology, 2001, 66, 217-232.	2.0	42
137	Sequence specificity of aminoglycoside-induced stop codon readthrough: Potential implications for treatment of Duchenne muscular dystrophy. Annals of Neurology, 2000, 48, 164-169.	2.8	233
138	The twenty-first amino acid. Nature, 2000, 407, 463-464.	13.7	106
139	Coupling of Open Reading Frames by Translational Bypassing. Annual Review of Biochemistry, 2000, 69, 343-372.	5.0	65
140	ODNBase-a web database for antisense oligonucleotide effectiveness studies. Bioinformatics, 2000, 16, 843-844.	1.8	21
141	Decoding of tandem quadruplets by adjacent tRNAs with eight-base anticodon loops. Nucleic Acids Research, 2000, 28, 3615-3624.	6.5	11
142	SURVEY AND SUMMARY: Antizyme expression: a subversion of triplet decoding, which is remarkably conserved by evolution, is a sensor for an autoregulatory circuit. Nucleic Acids Research, 2000, 28, 3185-3196.	6.5	85
143	The 23 S rRNA environment of ribosomal protein L9 in the 50 S ribosomal subunit11Edited by D. E. Draper. Journal of Molecular Biology, 2000, 297, 1129-1143.	2.0	42
144	Quadruplet codons: implications for code expansion and the specification of translation step size. Journal of Molecular Biology, 2000, 298, 195-209.	2.0	58

#	Article	IF	CITATIONS
145	Intricacies of ribosomal frameshifting. , 1999, 6, 206-207.		9
146	Mutations which alter the elbow region of tRNA2Gly reduce T4 gene 60 translational bypassing efficiency. EMBO Journal, 1999, 18, 2886-2896.	3.5	32
147	Structure of human ornithine decarboxylase antizyme 2 gene. Gene, 1999, 232, 165-171.	1.0	8
148	Eubacterial tmRNAs: everywhere except the alpha-Proteobacteria?. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1446, 145-148.	2.4	25
149	Functional and structural analysis of a pseudoknot upstream of the tag-encoded sequence in E. coli tmRNA 1 1Edited by D. E. Draper. Journal of Molecular Biology, 1999, 286, 733-744.	2.0	63
150	A three-way junction and constituent stem-loops as the stimulator for programmed \hat{a} 1 frameshifting in bacterial insertion sequence IS 911 1 1Edited by D. E. Draper. Journal of Molecular Biology, 1999, 286, 1365-1378.	2.0	45
151	Structural studies of the RNA pseudoknot required for readthrough of the gag-termination codon of murine leukemia virus. Journal of Molecular Biology, 1999, 288, 837-852.	2.0	46
152	Ribosomal $\hat{a}^{\prime\prime}$ 1 Frameshifting during Decoding of Bacillus subtilis cdd Occurs at the Sequence CGA AAG. Journal of Bacteriology, 1999, 181, 2930-2937.	1.0	45
153	Prediction of antisense oligonucleotide efficacy by in vitro methods. Nature Biotechnology, 1998, 16, 1374-1375.	9.4	36
154	Flexibility of the nascent polypeptide chain within the ribosome. Contacts from the peptide N-terminus to a specific region of the 30S subunit. FEBS Journal, 1998, 255, 409-413.	0.2	30
155	Does antizyme exist in Escherichia coli ?. Molecular Microbiology, 1998, 29, 1521-1522.	1.2	13
156	A Second Mammalian Antizyme: Conservation of Programmed Ribosomal Frameshifting. Genomics, 1998, 52, 119-129.	1.3	108
157	A nickel complex cleaves uridine in folded RNA structures: application to E. coli tmRNA and related engineered molecules. Journal of Molecular Biology, 1998, 279, 577-587.	2.0	54
158	The <i>Drosophila</i> Gene for Antizyme Requires Ribosomal Frameshifting for Expression and Contains an Intronic Gene for snRNP Sm D3 on the Opposite Strand. Molecular and Cellular Biology, 1998, 18, 1553-1561.	1.1	40
159	Effects of 3′-terminal phosphates in RNA produced by ribozyme cleavage. Rna, 1998, 4, 607-612.	1.6	5
160	Programmed frameshifting in the synthesis of mammalian antizyme is $+1$ in mammals, predominantly $+1$ in fission yeast, but \hat{a} 2 in budding yeast. Rna, 1998, 4, 1230-1238.	1.6	35
161	Does Disparate Occurrence of Autoregulatory Programmed Frameshifting in Decoding the Release Factor 2 Gene Reflect an Ancient Origin with Loss in Independent Lineages?. Journal of Bacteriology, 1998, 180, 3462-3466.	1.0	4
162	Structural probing and mutagenic analysis of the stem-loop required for Escherichia coli dnaX ribosomal frameshifting: programmed efficiency of 50%. Journal of Molecular Biology, 1997, 271, 47-60.	2.0	85

#	Article	IF	CITATIONS
163	Reported translational bypass in a trpR $\hat{a}\in^2$ - lacZ $\hat{a}\in^2$ fusion is accounted for by unusual initiation and +1 frameshifting 1 1Edited by J. H. Miller. Journal of Molecular Biology, 1997, 271, 491-498.	2.0	16
164	Recoding: Dynamic Reprogramming of Translation. Annual Review of Biochemistry, 1996, 65, 741-768.	5.0	335
165	Assignment of the Human Antizyme Gene (OAZ) to Chromosome 19p13.3 by Fluorescencein SituHybridization. Genomics, 1996, 38, 102-104.	1.3	11
166	Ribosomal Protein L9 Interactions with 23 S rRNA: The Use of a Translational Bypass Assay to Study the Effect of Amino Acid Substitutions. Journal of Molecular Biology, 1996, 261, 357-371.	2.0	45
167	Structural organization of Escherichia coli tmRNA. Biochimie, 1996, 78, 979-983.	1.3	37
168	tRNA and mRNA both in the same molecule. Nature Structural and Molecular Biology, 1996, 3, 494-494.	3.6	11
169	A case for trans translation. Nature, 1996, 379, 769-771.	13.7	64
170	Gifted Public Servants. Science, 1996, 272, 938-938.	6.0	0
171	Gifted Public Servants. Science, 1996, 272, 938-938.	6.0	0
172	Nucleotide sequence of a single-stranded RNA phage from Pseudomonas aeruginosa: Kinship to coliphages and conservation of regulatory RNA structures. Virology, 1995, 206, 611-625.	1.1	52
173	Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell, 1995, 80, 51-60.	13.5	486
174	Pseudoknot-dependent read-through of retroviral gag termination codons: importance of sequences in the spacer and loop 2 EMBO Journal, 1994, 13, 4137-4144.	3.5	64
175	A Functional Mutant of tRNAArg2 with Ten Extra Nucleotides in Its TFC Arm. Journal of Molecular Biology, 1994, 235, 1369-1376.	2.0	9
176	Deficiency of 1-Methylguanosine in tRNA from Salmonella typhimurium Induces Frameshifting by Quadruplet Translocation. Journal of Molecular Biology, 1993, 232, 756-765.	2.0	88
177	Functional tRNAs with altered 3′ ends EMBO Journal, 1993, 12, 2559-2566.	3.5	55
178	Functional Aspects of Three Modified Nucleosides, $\hat{\Gamma}$, ms2io6A, and m1G, Present in the Anticodon Loop of tRNA. , 1993, , 67-78.		2
179	Seven, eight and nine-membered anticodon loop mutants of tRNA2Arg which cause +1 frameshifting. Journal of Molecular Biology, 1992, 228, 1042-1054.	2.0	50
180	The signal for a leaky UAG stop codon in several plant viruses includes the two downstream codons. Journal of Molecular Biology, 1991, 218, 365-373.	2.0	226

#	Article	IF	Citations
181	An analysis of sequences stimulating frameshifting in the decoding of gene 10 of bacteriophage T7. Nucleic Acids Research, 1991, 19, 5607-5612.	6.5	49
182	Ribosomal Frameshifting from -2 to \pm 50 Nucleotides. Progress in Molecular Biology and Translational Science, 1990, 39, 159-183.	1.9	99
183	Ribosome gymnastics—Degree of difficulty 9.5, style 10.0. Cell, 1990, 62, 413-423.	13.5	252
184	The role of EF-Tu and other translation components in determining translocation step size. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1990, 1050, 274-278.	2.4	31
185	Sequence of E.colik 12 valuoperon which contains 3 genes for tRNAVal 1 and 1 gene for tRNALYS. Nucleic Acids Research, 1990, 18, 672-672.	6.5	6
186	tRNA hopping: enhancement by an expanded anticodon EMBO Journal, 1989, 8, 4315-4323.	3.5	68
187	Slippery Runs, Shifty Stops, Backward Steps, and Forward Hops: -2, -1, +1, +2, +5, and +6 Ribosomal Frameshifting. Cold Spring Harbor Symposia on Quantitative Biology, 1987, 52, 687-693.	2.0	251
188	Resolution of the discrepancy between a gene translation - termination codon and the deduced sequence for release of the encoded polypeptide. FEBS Journal, 1983, 137, 509-516.	0.2	7
189	The nucleotide sequence of the first externally suppressible-1 frameshift mutant, and of some nearby leaky frameshift mutants EMBO Journal, 1983, 2, 1345-1350.	3.5	56
190	The forms of tRNATrp found in avian sarcoma virus and uninfected chicken cells have structural identity but functional distinctions Journal of Biological Chemistry, 1980, 255, 9358-9368.	1.6	8
191	Is UAA or UGA part of the recognition signal for ribosomal initiation?. Nucleic Acids Research, 1979, 7, 1035-1042.	6.5	49
192	Identification and mapping of the transcriptional and translational products of the yeast plasmid, $2\hat{l}^{1/4}$ circle. Cell, 1979, 16, 827-839.	13.5	102
193	Binding of mammalian ribosomes to ms2 phage rna reveals an overlapping gene encoding a lysis function. Cell, 1979, 18, 247-256.	13.5	138
194	Normal tRNAs promote ribosomal frameshifting. Cell, 1979, 18, 1119-1131.	13.5	158
195	Further mapping of late adenovirus genes by cell-free translation of RNA selected by hybridization to specific DNA fragments. Cell, 1977, 12, 37-44.	13.5	126
196	Location and identification of the genes for adenovirus type 2 early polypeptides. Cell, 1976, 7, 141-151.	13.5	295
197	A map of the restriction targets in yeast 2 micron plasmid DNA cloned on bacteriophage lambda. Molecular Genetics and Genomics, 1976, 148, 287-294.	2.4	47
198	The synthetase gene of the RNA phages R17, MS2 and f2 has a single UAG terminator codon. Molecular Genetics and Genomics, 1975, 139, 19-31.	2.4	18

#	Article	lF	CITATIONS
199	External suppression of a frameshift mutant in Salmonella. Journal of Molecular Biology, 1968, 34, 541-557.	2.0	73
200	Poking a Hole in the Sanctity of the Triplet Code: Inferences for Framing., 0,, 367-383.		3
201	Stop codon readthrough contexts influence reporter expression differentially depending on the presence of an IRES. Wellcome Open Research, 0, 5, 221.	0.9	O
202	Complementary Studies in the Histidine Operon and on Frameshifting: a Compliment to What Roth Has Wrought., 0,, 123-130.		0
203	Stop codon readthrough contexts influence reporter expression differentially depending on the presence of an IRES. Wellcome Open Research, 0, 5, 221.	0.9	0