
Victor Mor-Avi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1404918/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Journal of the American Society of Echocardiography, 2015, 28, 1-39.e14.	2.8	10,755
2	Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. European Heart Journal Cardiovascular Imaging, 2015, 16, 233-271.	1.2	5,352
3	Current and Evolving Echocardiographic Techniques for the Quantitative Evaluation of Cardiac Mechanics: ASE/EAE Consensus Statement on Methodology and Indications. Journal of the American Society of Echocardiography, 2011, 24, 277-313.	2.8	1,026
4	Current and Evolving Echocardiographic Techniques for the Quantitative Evaluation of Cardiac Mechanics: ASE/EAE Consensus Statement on Methodology and Indications Endorsed by the Japanese Society of Echocardiography. European Journal of Echocardiography, 2011, 12, 167-205.	2.3	796
5	Quantitative Assessment of Left Ventricular Size and Function. Circulation, 2006, 114, 654-661.	1.6	434
6	Real-Time 3-Dimensional Echocardiographic Quantification of Left Ventricular Volumes. JACC: Cardiovascular Imaging, 2008, 1, 413-423.	5.3	313
7	Rapid online quantification of left ventricular volume from real-time three-dimensional echocardiographic data. European Heart Journal, 2006, 27, 460-468.	2.2	304
8	LA Strain for Categorization of LVÂDiastolicÂDysfunction. JACC: Cardiovascular Imaging, 2017, 10, 735-743.	5.3	299
9	Three-Dimensional Echocardiography. Journal of the American College of Cardiology, 2006, 48, 2053-2069.	2.8	283
10	Fast Measurement of Left Ventricular Mass With Real-Time Three-Dimensional Echocardiography. Circulation, 2004, 110, 1814-1818.	1.6	282
11	Live 3-Dimensional Transesophageal Echocardiography. Journal of the American College of Cardiology, 2008, 52, 446-449.	2.8	234
12	Multimodality Comparison of Quantitative Volumetric Analysis of the Right Ventricle. JACC: Cardiovascular Imaging, 2010, 3, 10-18.	5.3	228
13	Quantification of left ventricular volumes using three-dimensional echocardiographic speckle tracking: comparison with MRI. European Heart Journal, 2009, 30, 1565-1573.	2.2	223
14	Volumetric Quantification of Global and Regional Left Ventricular Function From Real-Time Three-Dimensional Echocardiographic Images. Circulation, 2005, 112, 1161-1170.	1.6	220
15	Real-Time 3D Echocardiographic Quantification of Left Atrial Volume. JACC: Cardiovascular Imaging, 2012, 5, 769-777.	5.3	192
16	Spectral analysis of heart rate fluctuations. A non-invasive, sensitive method for the early diagnosis of autonomic neuropathy in diabetes mellitus. Journal of the Autonomic Nervous System, 1987, 19, 119-125.	1.9	187
17	Late gadolinium enhancement cardiovascular magnetic resonance predicts clinical worsening in patients with pulmonary hypertension. Journal of Cardiovascular Magnetic Resonance, 2012, 14, 14.	3.3	187
18	Real-Time Three-Dimensional Transesophageal Echocardiography in Valve Disease: Comparison With Surgical Findings and Evaluation of Prosthetic Valves. Journal of the American Society of Echocardiography, 2008, 21, 1347-1354.	2.8	173

#	Article	IF	CITATIONS
19	Transthoracic 3D Echocardiographic LeftÂHeart Chamber Quantification UsingÂan Automated Adaptive AnalyticsÂAlgorithm. JACC: Cardiovascular Imaging, 2016, 9, 769-782.	5.3	171
20	Real-Time 3-Dimensional Echocardiography. Circulation, 2009, 119, 314-329.	1.6	169
21	Prognosis of Myocardial Damage in Sarcoidosis Patients With Preserved Left Ventricular Ejection Fraction. Circulation: Cardiovascular Imaging, 2016, 9, e003738.	2.6	167
22	Echocardiographic Quantification of Regional Left Ventricular Wall Motion With Color Kinesis. Circulation, 1996, 93, 1877-1885.	1.6	166
23	Characterization of Degenerative Mitral Valve Disease Using Morphologic Analysis of Real-Time Three-Dimensional Echocardiographic Images. Circulation: Cardiovascular Imaging, 2011, 4, 24-32.	2.6	153
24	Age-Related Normal Range of Left Ventricular Strain and Torsion Using Three-Dimensional Speckle-Tracking Echocardiography. Journal of the American Society of Echocardiography, 2014, 27, 55-64.	2.8	149
25	Quantitative Evaluation of Regional Left Ventricular Function Using Three-Dimensional Speckle Tracking Echocardiography in Patients With and Without Heart Disease. American Journal of Cardiology, 2009, 104, 1755-1762.	1.6	147
26	Reproducibility and Inter-Vendor Variability of Left Ventricular Deformation Measurements by Three-Dimensional Speckle-Tracking Echocardiography. Journal of the American Society of Echocardiography, 2011, 24, 878-885.	2.8	141
27	Combined Assessment of Myocardial Perfusion and Regional Left Ventricular Function by Analysis of Contrast-Enhanced Power Modulation Images. Circulation, 2001, 104, 352-357.	1.6	137
28	Segmental Analysis of Color Kinesis Images. Circulation, 1997, 95, 2082-2097.	1.6	127
29	A Study of Functional Anatomy of Aortic-Mitral Valve Coupling Using 3D Matrix Transesophageal Echocardiography. Circulation: Cardiovascular Imaging, 2009, 2, 24-31.	2.6	114
30	Ventricular Resynchronization by Multisite Pacing Improves Myocardial Performance in the Postoperative Single-Ventricle Patient. Annals of Thoracic Surgery, 2004, 78, 1678-1683.	1.3	113
31	Valvular Heart Disease. Journal of the American College of Cardiology, 2011, 58, 1933-1944.	2.8	113
32	Automated Echocardiographic Quantification of Left Ventricular Ejection Fraction Without Volume Measurements Using a Machine Learning Algorithm Mimicking a Human Expert. Circulation: Cardiovascular Imaging, 2019, 12, e009303.	2.6	110
33	Improved Semiautomated Quantification of Left Ventricular Volumes and Ejection Fraction Using 3-Dimensional Echocardiography with a Full Matrix-array Transducer: Comparison with Magnetic Resonance Imaging. Journal of the American Society of Echocardiography, 2005, 18, 779-788.	2.8	108
34	Quantification of Mitral Apparatus Dynamics in Functional and Ischemic Mitral Regurgitation Using Real-time 3-Dimensional Echocardiography. Journal of the American Society of Echocardiography, 2008, 21, 347-354.	2.8	108
35	Invasive Validation of the Echocardiographic Assessment of Left Ventricular Filling Pressures Using the 2016 Diastolic Guidelines: Head-to-Head Comparison with the 2009 Guidelines. Journal of the American Society of Echocardiography, 2018, 31, 79-88.	2.8	102
36	Measurement of Left Ventricular Mass by Real-Time Three-Dimensional Echocardiography: Validation Against Magnetic Resonance and Comparison with Two-Dimensional and M-Mode Measurements. Journal of the American Society of Echocardiography, 2008, 21, 1001-1005.	2.8	101

#	Article	IF	CITATIONS
37	3D Echocardiographic Location of Implantable Device Leads and Mechanism of Associated Tricuspid Regurgitation. JACC: Cardiovascular Imaging, 2014, 7, 337-347.	5.3	97
38	3-Dimensional Echocardiographic AnalysisÂof the Tricuspid Annulus ProvidesÂNew Insights Into TricuspidÂValveÂGeometry and Dynamics. JACC: Cardiovascular Imaging, 2019, 12, 401-412.	5.3	97
39	Novel Approach to Three-Dimensional Echocardiographic Quantification of Right Ventricular Volumes and Function from Focused Views. Journal of the American Society of Echocardiography, 2015, 28, 1222-1231.	2.8	96
40	Peak left atrial strain as a single measure for the non-invasive assessment of left ventricular filling pressures. International Journal of Cardiovascular Imaging, 2019, 35, 23-32.	1.5	94
41	Three-dimensional echocardiographic quantification of the left-heart chambers using an automated adaptive analytics algorithm: multicentre validation study. European Heart Journal Cardiovascular Imaging, 2018, 19, 47-58.	1.2	91
42	Assessment of the Aortic Root Using Real-Time 3D Transesophageal Echocardiography. Circulation Journal, 2010, 74, 2649-2657.	1.6	87
43	Effects of Frame Rate on Three-Dimensional Speckle-Tracking–Based Measurements of Myocardial Deformation. Journal of the American Society of Echocardiography, 2012, 25, 978-985.	2.8	85
44	Accuracy of aortic annular measurements obtained from three-dimensional echocardiography, CT and MRI: human in vitro and in vivo studies. Heart, 2012, 98, 1146-1152.	2.9	84
45	Objective evaluation of regional left ventricular wall motion during dobutamine stress echocardiographic studies using segmental analysis of color kinesis images. Journal of the American College of Cardiology, 1999, 34, 409-419.	2.8	78
46	Machine Learning–Based Three-Dimensional Echocardiographic Quantification of Right Ventricular Size and Function: Validation Against Cardiac Magnetic Resonance. Journal of the American Society of Echocardiography, 2019, 32, 969-977.	2.8	76
47	3-Dimensional Echocardiography. JACC: Cardiovascular Imaging, 2018, 11, 1854-1878.	5.3	73
48	Age- and Gender-Dependency of Left Ventricular Geometry Assessed with Real-Time Three-Dimensional Transthoracic Echocardiography. Journal of the American Society of Echocardiography, 2011, 24, 541-547.	2.8	69
49	Accuracy of mitral valve area measurements using transthoracic rapid freehand 3-dimensional scanning: comparison with noninvasive and invasive methods. Journal of the American Society of Echocardiography, 2003, 16, 1292-1300.	2.8	68
50	Three-dimensional echocardiography-based analysis of right ventricular shape in pulmonary arterial hypertension. European Heart Journal Cardiovascular Imaging, 2016, 17, 564-575.	1.2	63
51	3D Morphological Changes in LV and RV During LVAD Ramp Studies. JACC: Cardiovascular Imaging, 2018, 11, 159-169.	5.3	62
52	Quantitative Evaluation of Global and Regional Left Ventricular Diastolic Function With Color Kinesis. Circulation, 1998, 97, 1053-1061.	1.6	61
53	Tricuspid regurgitation progression and regression in pulmonary arterial hypertension: implications for right ventricular and tricuspid valve apparatus geometry and patients outcome. European Heart Journal Cardiovascular Imaging, 2017, 18, 86-94.	1.2	61
54	Volumetric analysis of regional left ventricular function with real-time three-dimensional echocardiography: validation by magnetic resonance and clinical utility testing. Heart, 2007, 93, 572-578.	2.9	60

#	Article	IF	CITATIONS
55	Bicuspid Aortic Valve: Inter-Racial Difference in Frequency and Aortic Dimensions. JACC: Cardiovascular Imaging, 2012, 5, 981-989.	5.3	60
56	2D and 3D Echocardiography-Derived Indices of Left Ventricular FunctionÂandÂShape. JACC: Cardiovascular Imaging, 2018, 11, 1569-1579.	5.3	60
57	Reasons for Nonadherence to Guidelines for Aortic Valve Replacement in Patients With Severe Aortic Stenosis and Potential Solutions. American Journal of Cardiology, 2010, 105, 1339-1342.	1.6	59
58	A three-dimensional insight into the complexity of flow convergence in mitral regurgitation: adjunctive benefit of anatomic regurgitant orifice area. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1015-H1024.	3.2	59
59	Three-Dimensional Echocardiographic Automated Quantification of Left Heart Chamber Volumes Using an Adaptive Analytics Algorithm: Feasibility and Impact of Image Quality in Nonselected Patients. Journal of the American Society of Echocardiography, 2017, 30, 879-885.	2.8	59
60	Machine learning based automated dynamic quantification of left heart chamber volumes. European Heart Journal Cardiovascular Imaging, 2019, 20, 541-549.	1.2	59
61	Age and body surface area dependency of mitral valve and papillary apparatus parameters: assessment by real-time three-dimensional echocardiography. European Journal of Echocardiography, 2008, 10, 287-294.	2.3	58
62	Comprehensive Two-Dimensional Interrogation of the Tricuspid Valve Using Knowledge Derived from Three-Dimensional Echocardiography. Journal of the American Society of Echocardiography, 2016, 29, 74-82.	2.8	57
63	Dynamic Three-Dimensional Color Flow Doppler: An Improved Technique for the Assessment of Mitral Regurgitation. Echocardiography, 2003, 20, 265-273.	0.9	56
64	The Role of Echocardiographic Harmonic Imaging and Contrast Enhancement for Improvement of Endocardial Border Delineation. Journal of the American Society of Echocardiography, 2000, 13, 131-138.	2.8	55
65	Quantification of Regional Left Ventricular Wall Motion from Real-time 3-Dimensional Echocardiography in Patients with Poor Acoustic Windows: Effects of Contrast Enhancement Tested Against Cardiac Magnetic Resonance. Journal of the American Society of Echocardiography, 2006, 19, 886-893.	2.8	55
66	Echocardiography and cardiovascular magnetic resonance based evaluation of myocardial strain and relationship with late gadolinium enhancement. Journal of Cardiovascular Magnetic Resonance, 2019, 21, 46.	3.3	54
67	Improved detection of myocardial damage in sarcoidosis using longitudinal strain in patients with preserved left ventricular ejection fraction. Echocardiography, 2016, 33, 1344-1352.	0.9	53
68	Assessment of Right Ventricular Function Using Echocardiographic Speckle Tracking of the Tricuspid Annular Motion: Comparison with Cardiac Magnetic Resonance. Echocardiography, 2012, 29, 19-24.	0.9	52
69	The role of contrast enhancement in echocardiographic assessment of left ventricular function. American Journal of Cardiology, 2002, 90, 28-34.	1.6	51
70	Rapid Estimation of Left Ventricular Function Using Echocardiographic Speckle-Tracking of Mitral Annular Displacement. Journal of the American Society of Echocardiography, 2010, 23, 511-515.	2.8	50
71	A Suggested Roadmap for Cardiovascular Ultrasound Research for the Future. Journal of the American Society of Echocardiography, 2011, 24, 455-464.	2.8	50
72	Comparison Between Four-Chamber and Right Ventricular–Focused Views for the Quantitative Evaluation of Right Ventricular Size and Function. Journal of the American Society of Echocardiography, 2019, 32, 484-494.	2.8	50

#	Article	IF	CITATIONS
73	Normal Values of Left Atrial Size and Function and the Impact of Age: Results of the World Alliance Societies of Echocardiography Study. Journal of the American Society of Echocardiography, 2022, 35, 154-164.e3.	2.8	47
74	Quantitative assessment of left ventricular volume and ejection fraction using two-dimensional speckle tracking echocardiography. European Journal of Echocardiography, 2009, 10, 82-88.	2.3	46
75	Right Ventricular Strain in Pulmonary Arterial Hypertension: A 2D Echocardiography and Cardiac Magnetic Resonance Study. Echocardiography, 2015, 32, 257-263.	0.9	46
76	Combined Assessment of Coronary Anatomy and Myocardial Perfusion Using Multidetector Computed Tomography for the Evaluation of Coronary Artery Disease. American Journal of Cardiology, 2009, 103, 1487-1494.	1.6	45
77	Impact of Implantable Transvenous Device Lead Location on Severity of Tricuspid Regurgitation. Journal of the American Society of Echocardiography, 2014, 27, 1164-1175.	2.8	44
78	Morphologic Analysis of the Normal Right Ventricle Using Three-Dimensional Echocardiography–Derived Curvature Indices. Journal of the American Society of Echocardiography, 2018, 31, 614-623.	2.8	44
79	Load Dependency of Left Atrial Strain in Normal Subjects. Journal of the American Society of Echocardiography, 2018, 31, 1221-1228.	2.8	44
80	Detection of regional temporal abnormalities in left ventricular function during acute myocardial ischemia. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H1770-H1781.	3.2	43
81	Novel echocardiographic parameters of aortic insufficiency in continuous-flow left ventricular assist devices and clinical outcome. Journal of Heart and Lung Transplantation, 2016, 35, 976-985.	0.6	43
82	Right Heart Involvement in Patients with Sarcoidosis. Echocardiography, 2016, 33, 734-741.	0.9	43
83	Reproducibility and experience dependence of echocardiographic indices of left ventricular function: Sideâ€byâ€side comparison of global longitudinal strain and ejection fraction. Echocardiography, 2017, 34, 365-370.	0.9	43
84	Transnasal transesophageal echocardiography. Journal of the American Society of Echocardiography, 1997, 10, 728-737.	2.8	41
85	Real-Time 3-Dimensional Echocardiographic Assessment of Left Ventricular Dyssynchrony. JACC: Cardiovascular Imaging, 2009, 2, 802-812.	5.3	40
86	Sample Size and Cost Analysis for Pulmonary Arterial Hypertension Drug Trials Using Various Imaging Modalities to Assess Right Ventricular Size and Function End Points. Circulation: Cardiovascular Imaging, 2014, 7, 115-124.	2.6	40
87	Imaging and Quantification of Myocardial Perfusion Using Real-Time Three-Dimensional Echocardiography. Journal of the American College of Cardiology, 2006, 47, 146-154.	2.8	39
88	The Value of Three-Dimensional Echocardiography Derived Mitral Valve Parametric Maps and the Role of Experience in the Diagnosis of Pathology. Journal of the American Society of Echocardiography, 2011, 24, 860-867.	2.8	39
89	Normal Values of Right Atrial Size and Function According to Age, Sex, and Ethnicity: Results of the World Alliance Societies of Echocardiography Study. Journal of the American Society of Echocardiography, 2021, 34, 286-300.	2.8	38
90	Use of Color Kinesis for Evaluation of Left Ventricular Filling in Patients With Dilated Cardiomyopathy and Mitral Regurgitation. Journal of the American College of Cardiology, 1998, 31, 1598-1606.	2.8	37

#	Article	IF	CITATIONS
91	Quantitative Evaluation of Left Ventricular Function in a Transgenic Mouse Model of Dilated Cardiomyopathy with 2-Dimensional Contrast Echocardiography. Journal of the American Society of Echocardiography, 1999, 12, 209-214.	2.8	37
92	Age dependency of the Tei index of myocardial performance. Journal of the American Society of Echocardiography, 2004, 17, 350-352.	2.8	37
93	Considerations when measuring myocardial perfusion reserve by cardiovascular magnetic resonance using regadenoson. Journal of Cardiovascular Magnetic Resonance, 2012, 14, 89.	3.3	37
94	Is Echocardiography Reliable for Monitoring the Adverse Cardiac Effects of Chemotherapy?. Journal of the American College of Cardiology, 2013, 61, 85-87.	2.8	37
95	Automated, machine learningâ€based, 3D echocardiographic quantification of left ventricular mass. Echocardiography, 2019, 36, 312-319.	0.9	37
96	Serial Changes in Left Ventricular Shape Following Early Mitral Valve Repair. American Journal of Cardiology, 2010, 106, 836-842.	1.6	36
97	Detection of myocardial perfusion abnormalities using ultra-low radiation dose regadenoson stress multidetector computed tomography. Journal of Cardiovascular Computed Tomography, 2011, 5, 247-254.	1.3	35
98	Myocardial Perfusion: Near-automated Evaluation from Contrast-enhanced MR Images Obtained at Rest and during Vasodilator Stress. Radiology, 2012, 265, 576-583.	7.3	35
99	First Clinical Experience With 3-Dimensional Echocardiographic Transillumination Rendering. JACC: Cardiovascular Imaging, 2019, 12, 1868-1871.	5.3	35
100	Myocardial regional blood flow: Quantitative measurement by computer analysis of contrast enhanced echocardiographic images. Ultrasound in Medicine and Biology, 1993, 19, 619-633.	1.5	33
101	Dual Triggering Improves the Accuracy of Left Ventricular Volume Measurements by Contrast-enhanced Real-time 3-Dimensional Echocardiography. Journal of the American Society of Echocardiography, 2005, 18, 1292-1298.	2.8	33
102	Three-Dimensional Echocardiography: Is it Ready for Everyday Clinical Use?. JACC: Cardiovascular Imaging, 2009, 2, 114-117.	5.3	33
103	Noninvasive quantification of left ventricular elastance and ventricular-arterial coupling using three-dimensional echocardiography and arterial tonometry. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1916-H1923.	3.2	33
104	Evaluation of Myocardial Deformation in Patients with Sickle Cell Disease and Preserved Ejection Fraction Using Threeâ€Đimensional Speckle Tracking Echocardiography. Echocardiography, 2012, 29, 962-969.	0.9	33
105	Three-Dimensional Modeling of the Right Ventricle from Two-Dimensional Transthoracic Echocardiographic Images: Utility of Knowledge-Based Reconstruction in Pulmonary Arterial Hypertension. Journal of the American Society of Echocardiography, 2013, 26, 860-867.	2.8	33
106	Refining Severe Tricuspid Regurgitation Definition by Echocardiography with a New Outcomes-Based "Massive―Grade. Journal of the American Society of Echocardiography, 2020, 33, 1087-1094.	2.8	33
107	Normal values of regional left ventricular endocardial motion: multicenter color kinesis study. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H2464-H2476.	3.2	32
108	Comparative Diagnostic Accuracy of Multiplane and Multislice Three-Dimensional Dobutamine Stress Echocardiography in the Diagnosis of Coronary Artery Disease. Journal of the American Society of Echocardiography, 2009, 22, 437-442.	2.8	32

#	Article	IF	CITATIONS
109	The use of real-time three-dimensional echocardiography for the quantification of left ventricular volumes and function. Current Opinion in Cardiology, 2009, 24, 402-409.	1.8	32
110	Deep Learning–Based Automated Echocardiographic Quantification of Left Ventricular Ejection Fraction: A Point-of-Care Solution. Circulation: Cardiovascular Imaging, 2021, 14, e012293.	2.6	32
111	Improved Delineation of Cardiac Pathology Using a Novel Three-Dimensional Echocardiographic Tissue Transparency Tool. Journal of the American Society of Echocardiography, 2020, 33, 1316-1323.	2.8	31
112	Quantitative Assessment of Regional Right Ventricular Function with Color Kinesis. American Journal of Respiratory and Critical Care Medicine, 1999, 159, 1949-1959.	5.6	30
113	Harmonic imaging for endocardial visualization and myocardial contrast echocardiography during transesophageal echocardiography. Journal of the American Society of Echocardiography, 2004, 17, 10-14.	2.8	30
114	Normal Values of Cardiac Output and Stroke Volume According to Measurement Technique, Age, Sex, and Ethnicity: Results of the World Alliance of Societies of Echocardiography Study. Journal of the American Society of Echocardiography, 2021, 34, 1077-1085.e1.	2.8	30
115	Automated endocardial border detection and evaluation of left ventricular function from contrast-enhanced images using modified acoustic quantification. Journal of the American Society of Echocardiography, 2002, 15, 777-781.	2.8	29
116	Effects of left ventricular pressure on sonicated albumin microbubbles: Evaluation using an isolated rabbit heart model. Journal of the American College of Cardiology, 1994, 24, 1779-1785.	2.8	28
117	Improved quantification of left ventricular function by applying signal averaging to echocardiographic acoustic quantification. Journal of the American Society of Echocardiography, 1995, 8, 679-689.	2.8	28
118	Simultaneous Longitudinal Strain in All 4 Cardiac Chambers. Circulation: Cardiovascular Imaging, 2016, 9, e003895.	2.6	28
119	A New Definition for an Old Entity: Improved Definition of Mitral Valve Prolapse Using Three-Dimensional Echocardiography and Color-Coded Parametric Models. Journal of the American Society of Echocardiography, 2014, 27, 8-16.	2.8	27
120	Echocardiographic Diagnosis of Acute Pulmonary Embolism in Patients with McConnell's Sign. Echocardiography, 2016, 33, 696-702.	0.9	27
121	Feasibility of Cardiac Magnetic Resonance Wideband Protocol in Patients With Implantable Cardioverter Defibrillators and Its Utility for Defining Scar. American Journal of Cardiology, 2019, 123, 1329-1335.	1.6	27
122	Three-dimensional analysis of interventricular septal curvature from cardiac magnetic resonance images for the evaluation of patients with pulmonary hypertension. International Journal of Cardiovascular Imaging, 2012, 28, 1073-1085.	1.5	26
123	Myocardial contrast echocardiography with power Doppler imaging. American Journal of Cardiology, 2000, 86, 479-481.	1.6	25
124	3D echocardiographic analysis of aortic annulus for transcatheter aortic valve replacement using novel aortic valve quantification software: Comparison with computed tomography. Echocardiography, 2017, 34, 690-699.	0.9	25
125	Quantification of Right Ventricular Size and Function from Contrast-Enhanced Three-Dimensional Echocardiographic Images. Journal of the American Society of Echocardiography, 2017, 30, 1193-1202.	2.8	25
126	Parasympathetically modulated antiarrhythmic action of lidocaine in atrial fibrillation. American Heart Journal, 1990, 119, 1061-1068.	2.7	24

#	Article	IF	CITATIONS
127	Identification of Cardiac Masses and Abnormal Blood Flow Patterns with Harmonic Power Doppler Contrast Echocardiography. Journal of the American Society of Echocardiography, 1999, 12, 871-875.	2.8	24
128	Value of multidetector computed tomography evaluation of myocardial perfusion in the assessment of ischemic heart disease: comparison with nuclear perfusion imaging. European Radiology, 2009, 19, 1897-1905.	4.5	24
129	Imaging the Forgotten Chamber: Is the Devil in the Boundary?. Journal of the American Society of Echocardiography, 2010, 23, 141-143.	2.8	24
130	Elongation of chordae tendineae as an adaptive process to reduce mitral regurgitation in functional mitral regurgitation. European Heart Journal Cardiovascular Imaging, 2016, 17, 500-509.	1.2	24
131	Atrial-focused views improve the accuracy of two-dimensional echocardiographic measurements of the left and right atrial volumes: a contribution to the increase in normal values in the guidelines update. International Journal of Cardiovascular Imaging, 2017, 33, 209-218.	1.5	24
132	Color Kinesis Echocardiography, 1998, 15, 21-34.	0.9	23
133	Effects of MPEG Compression on the Quality and Diagnostic Accuracy of Digital Echocardiography Studies. Journal of the American Society of Echocardiography, 2000, 13, 51-57.	2.8	23
134	Multidetector computed tomography evaluation of left ventricular volumes: Sources of error and guidelines for their minimization. Journal of Cardiovascular Computed Tomography, 2008, 2, 222-230.	1.3	23
135	Prognostic value of normal regadenoson stress perfusion cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2013, 15, 108.	3.3	23
136	Diagnosis of Isolated Cleft Mitral Valve Using Three-Dimensional Echocardiography. Journal of the American Society of Echocardiography, 2018, 31, 1161-1167.	2.8	23
137	Echocardiographic Assessment of the Tricuspid Annulus: The Effects of the Third Dimension and Measurement Methodology. Journal of the American Society of Echocardiography, 2019, 32, 238-247.	2.8	23
138	Myocardial strain analysis of the right ventricle: comparison of different cardiovascular magnetic resonance and echocardiographic techniques. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 51.	3.3	23
139	Automated Interpretation of Regional Left Ventricular Wall Motion from Cardiac Magnetic Resonance Images. Journal of Cardiovascular Magnetic Resonance, 2006, 8, 427-433.	3.3	22
140	Fusion of Three-Dimensional Echocardiographic Regional Myocardial Strain with Cardiac Computed Tomography for Noninvasive Evaluation of the Hemodynamic Impact of Coronary Stenosis in Patients with Chest Pain. Journal of the American Society of Echocardiography, 2018, 31, 664-673.	2.8	22
141	Contrast echocardiographic quantification of regional myocardial perfusion: Validation with an isolated rabbit heart model. Journal of the American Society of Echocardiography, 1996, 9, 156-165.	2.8	21
142	Volumetric quantification of myocardial perfusion using analysis of multi-detector computed tomography 3D datasets: comparison with nuclear perfusion imaging. European Radiology, 2010, 20, 337-347.	4.5	21
143	Myocardial perfusion reserve and global longitudinal strain as potential markers of coronary allograft vasculopathy in late-stage orthotopic heart transplantation. International Journal of Cardiovascular Imaging, 2018, 34, 1607-1617.	1.5	21
144	Feasibility of Left Ventricular Shape Analysis from Transthoracic Real-Time 3-D Echocardiographic Images. Ultrasound in Medicine and Biology, 2009, 35, 1953-1962.	1.5	20

#	Article	IF	CITATIONS
145	Analysis of myocardial perfusion from vasodilator stress computed tomography: Does improvement in image quality by iterative reconstruction lead to improved diagnostic accuracy?. Journal of Cardiovascular Computed Tomography, 2014, 8, 238-245.	1.3	20
146	Frequency of Inverted Electrocardiographic T Waves (Cerebral T Waves) in Patients With Acute Strokes and Their Relation to Left Ventricular Wall Motion Abnormalities. American Journal of Cardiology, 2018, 121, 120-124.	1.6	20
147	Impact of Severe Pulmonary Arterial Hypertension on the Left Heart and Prognostic Implications. Journal of the American Society of Echocardiography, 2019, 32, 1128-1137.	2.8	20
148	Improved Quantification of Left Ventricular Volumes and Mass Based on Endocardial and Epicardial Surface Detection from Cardiac MR Images Using Level Set Models. Journal of Cardiovascular Magnetic Resonance, 2005, 7, 595-602.	3.3	19
149	Non-invasive assessment of the haemodynamic significance of coronary stenosis using fusion of cardiac computed tomography and 3D echocardiography. European Heart Journal Cardiovascular Imaging, 2016, 18, jew147.	1.2	19
150	Regional myocardial strain by cardiac magnetic resonance feature tracking for detection of scar in ischemic heart disease. Magnetic Resonance Imaging, 2020, 68, 190-196.	1.8	19
151	Myocardial transit time of the echocardiographic contrast media. Ultrasound in Medicine and Biology, 1993, 19, 635-648.	1.5	18
152	The Role of Still?Frame Parametric Imaging in Magnetic Resonance Assessment of Left Ventricular Wall Motion by Non?cardiologists. Journal of Cardiovascular Magnetic Resonance, 2004, 6, 619-625.	3.3	18
153	Visualization and Measurement of Mitral Valve Chordae Tendineae Using Three-Dimensional Transesophageal Echocardiography from the Transgastric Approach. Journal of the American Society of Echocardiography, 2015, 28, 449-454.	2.8	18
154	Al Based CMR Assessment of Biventricular Function. JACC: Cardiovascular Imaging, 2022, 15, 413-427.	5.3	18
155	Objective assessment of left ventricular wall motion from contrast-enhanced power modulation images. Journal of the American Society of Echocardiography, 2002, 15, 118-128.	2.8	17
156	Quantitative Three-Dimensional Evaluation of Myocardial Perfusion During Regadenoson Stress Using Multidetector Computed Tomography. Journal of Computer Assisted Tomography, 2012, 36, 443-449.	0.9	16
157	Three-dimensional echocardiographic quantitative evaluation of left ventricular diastolic function using analysis of chamber volume and myocardial deformation. International Journal of Cardiovascular Imaging, 2013, 29, 285-293.	1.5	16
158	Semi-automated echocardiographic quantification of right ventricular size and function. International Journal of Cardiovascular Imaging, 2015, 31, 1149-1157.	1.5	16
159	Acoustic quantification indexes of left ventricular size and function: Effects of signal averaging. Journal of the American Society of Echocardiography, 1998, 11, 792-802.	2.8	15
160	Current State of Intraoperative Echocardiography. Echocardiography, 2003, 20, 771-780.	0.9	15
161	Quantitative diagnosis of stress-induced myocardial ischemia using analysis of contrast echocardiographic parametric perfusion imagesâ~†. European Journal of Echocardiography, 2006, 7, 217-225.	2.3	15
162	Clinical utility of contrast-enhanced echocardiography. Clinical Cardiology, 2009, 29, 15-25.	1.8	15

#	Article	IF	CITATIONS
163	Screening for Outflow Cannula Malfunction of Left Ventricular Assist Devices (LVADs) With the Use of Doppler Echocardiography: New LVAD-Specific Reference Values for Contemporary Devices. Journal of Cardiac Failure, 2016, 22, 808-814.	1.7	15
164	Virtual Reality Analysis of Three-Dimensional Echocardiographic and Cardiac Computed Tomographic Data Sets. Journal of the American Society of Echocardiography, 2020, 33, 1306-1315.	2.8	15
165	Progression of aortic stenosis and echocardiographic criteria for its severity. European Heart Journal Cardiovascular Imaging, 2020, 21, 737-743.	1.2	15
166	Age Dependency of Left Atrial and Left Ventricular Acoustic Quantification Waveforms for the Evaluation of Diastolic Performance in Left Ventricular Hypertrophy. Journal of the American Society of Echocardiography, 1998, 11, 1027-1035.	2.8	14
167	Three-Dimensional Echocardiography in Adult Patients: Comparison Between Transthoracic and Transesophageal Reconstructions. Journal of the American Society of Echocardiography, 1999, 12, 1045-1052.	2.8	14
168	Value of Vasodilator Stress Myocardial Contrast Echocardiography and Magnetic Resonance Imaging for the Differential Diagnosis of Ischemic versus Nonischemic Cardiomyopathy. Journal of the American Society of Echocardiography, 2008, 21, 425-432.	2.8	14
169	Automated frameâ€byâ€frame endocardial border detection from cardiac magnetic resonance images for quantitative assessment of left ventricular function: Validation and clinical feasibility. Journal of Magnetic Resonance Imaging, 2009, 29, 560-568.	3.4	14
170	Three-dimensional analysis of regional left ventricular endocardial curvature from cardiac magnetic resonance images. Magnetic Resonance Imaging, 2011, 29, 516-524.	1.8	14
171	Measurement errors in serial echocardiographic assessments of aortic valve stenosis severity. International Journal of Cardiovascular Imaging, 2020, 36, 471-479.	1.5	14
172	Use of Machine Learning to Improve Echocardiographic Image Interpretation Workflow: A Disruptive Paradigm Change?. Journal of the American Society of Echocardiography, 2021, 34, 443-445.	2.8	14
173	Power Doppler Imaging as a Basis for Automated Endocardial Border Detection During Left Ventricular Contrast Enhancement. Echocardiography, 2000, 17, 529-537.	0.9	13
174	Three-dimensional adult echocardiography: Where the hidden dimension helps. Current Cardiology Reports, 2008, 10, 218-225.	2.9	13
175	Deformação miocárdica pelo speckle tracking na cardiomiopatia dilatada grave. Arquivos Brasileiros De Cardiologia, 2012, 99, 834-843.	0.8	13
176	Multi-parametric quantification of tricuspid regurgitation using cardiovascular magnetic resonance: A comparison to echocardiography. European Journal of Radiology, 2017, 86, 213-220.	2.6	13
177	A multi-vendor, multi-center study on reproducibility and comparability of fast strain-encoded cardiovascular magnetic resonance imaging. International Journal of Cardiovascular Imaging, 2020, 36, 899-911.	1.5	13
178	Normal Values of Left Ventricular Size and Function on Three-Dimensional Echocardiography: Results of the World Alliance Societies of Echocardiography Study. Journal of the American Society of Echocardiography, 2022, 35, 449-459.	2.8	13
179	Spectral analysis of left ventricular area variability as a tool to improve the understanding of cardiac autonomic control. Physiological Measurement, 2000, 21, 319-331.	2.1	12
180	Quantification of Left Ventricular Size and Function Using Contrast-Enhanced Real-Time 3D Imaging with Power Modulation: Comparison with Cardiac MRI. Ultrasound in Medicine and Biology, 2012, 38, 1853-1858.	1.5	12

#	Article	IF	CITATIONS
181	Three-dimensional analysis of regional right ventricular shape and function in repaired tetralogy of Fallot using cardiovascular magnetic resonance. Clinical Imaging, 2018, 52, 106-112.	1.5	12
182	Improvement in echocardiographic evaluation of left ventricular wall motion using still-frame parametric imaging. Journal of the American Society of Echocardiography, 2002, 15, 926-934.	2.8	11
183	Quantification of regional myocardial perfusion using semiautomated translation-free analysis of contrast-enhanced power modulation images. Journal of the American Society of Echocardiography, 2003, 16, 116-123.	2.8	11
184	Assessment of left ventricular function with contrast echocardiography. Cardiology Clinics, 2004, 22, 211-219.	2.2	11
185	Noninvasive Estimation of Left Ventricular Compliance Using Three-Dimensional Echocardiography. Journal of the American Society of Echocardiography, 2012, 25, 661-666.	2.8	11
186	Three-Dimensional Transthoracic Static and Dynamic Normative Values of the Mitral Valve Apparatus: Results from the Multicenter World Alliance Societies of Echocardiography Study. Journal of the American Society of Echocardiography, 2022, 35, 738-751.e1.	2.8	11
187	Assessment of right ventricular size and function from cardiovascular magnetic resonance images using artificial intelligence. Journal of Cardiovascular Magnetic Resonance, 2022, 24, 27.	3.3	11
188	Three-dimensional echocardiography: coming of age. Heart, 2008, 94, 1123-1125.	2.9	10
189	Myocardial Perfusion Imaging with Cardiac Computed Tomography: State of the Art. Journal of Cardiovascular Translational Research, 2013, 6, 695-707.	2.4	10
190	Feasibility of Left Ventricular Global Longitudinal Strain Measurements from Contrast-Enhanced Echocardiographic Images. Journal of the American Society of Echocardiography, 2018, 31, 297-303.	2.8	10
191	The role of computed tomography myocardial perfusion imaging in clinical practice. Journal of Cardiovascular Computed Tomography, 2020, 14, 185-194.	1.3	10
192	Machine learning based quantification of ejection and filling parameters by fully automated dynamic measurement of left ventricular volumes from cardiac magnetic resonance images. Magnetic Resonance Imaging, 2020, 67, 28-32.	1.8	10
193	Comparison of machine learning and deep learning for view identification from cardiac magnetic resonance images. Clinical Imaging, 2022, 82, 121-126.	1.5	10
194	Effect of localized surface cooling of the heart muscle on the highâ€frequency content of ecg waveforms in dogs. Clinical Cardiology, 1988, 11, 112-118.	1.8	9
195	Evaluation of Global and Regional Right Ventricular Function Using Automated Border Detection Techniques. Echocardiography, 1999, 16, 105-116.	0.9	9
196	Effects of inotropic stimulation on segmental left ventricular relaxation quantified by color kinesis. American Journal of Cardiology, 2000, 85, 1476-1480.	1.6	9
197	Assessment of Global and Regional Left Ventricular Diastolic Function in Hypertensive Heart Disease Using Automated Border Detection Techniques. Echocardiography, 2003, 20, 673-681.	0.9	9
198	Frequency content of the QRS notching in high-fidelity canine ECG. Journal of Biomedical Informatics, 1989, 22, 18-25.	0.7	8

#	Article	IF	CITATIONS
199	Recent Advances in Echocardiographic Evaluation of Left Ventricular Anatomy, Perfusion, and Function. Cardiology in Review, 2001, 9, 146-159.	1.4	8
200	Normal values of left ventricular systolic and diastolic function derived from signal-averaged acoustic quantification waveforms: a multicenter study. Journal of the American Society of Echocardiography, 2003, 16, 1244-1251.	2.8	8
201	Simultaneous real-time echocardiographic imaging of myocardial perfusion and regional function using color-encoded, contrast-enhanced power modulation. Journal of the American Society of Echocardiography, 2003, 16, 1258-1266.	2.8	8
202	Three-Dimensional Echocardiographic Evaluation of the Heart Chambers: Size, Function, and Mass. Cardiology Clinics, 2007, 25, 241-251.	2.2	8
203	Semi-automated analysis of dynamic changes in myocardial contrast from real-time three-dimensional echocardiographic images as a basis for volumetric quantification of myocardial perfusion. European Journal of Echocardiography, 2009, 10, 485-490.	2.3	8
204	Three-dimensional echocardiography investigation of the mechanisms of tricuspid annular dilatation. International Journal of Cardiovascular Imaging, 2020, 36, 33-43.	1.5	8
205	Impact of Wideband Late Gadolinium Enhancement Cardiac Magnetic Resonance Imaging on Deviceâ€Related Artifacts in Different Implantable <scp>Cardioverterâ€Đefibrillator</scp> Types. Journal of Magnetic Resonance Imaging, 2021, 54, 1257-1265.	3.4	8
206	Acoustic Quantification Today and Its Future Horizons. Echocardiography, 1999, 16, 85-94.	0.9	7
207	Automated quantitative assessment of wall motion in patients with poor acoustic windows. Journal of the American Society of Echocardiography, 2004, 17, 723-731.	2.8	7
208	A histopathologic schema to quantify the burden of cardiac amyloidosis: Relationship with survival and echocardiographic parameters. Echocardiography, 2019, 36, 285-291.	0.9	7
209	Some aspects of the wideband recording of the electrocardiogram. Clinical Cardiology, 1990, 13, 120-126.	1.8	6
210	Echocardiographic contrast agents and left ventricular contractility: Evaluation using an isolated rabbit heart model. Journal of the American Society of Echocardiography, 1996, 9, 452-461.	2.8	6
211	Objective echocardiographic evaluation of the cardiovascular system. Current Opinion in Cardiology, 1997, 12, 553-560.	1.8	6
212	Evaluation of Left Ventricular Diastolic Performance Using Automated Border Detection. Echocardiography, 1999, 16, 51-62.	0.9	6
213	Electronic transmission of digital echocardiographic studies: effects of MPEG compression. International Journal of Cardiology, 2000, 75, 141-145.	1.7	6
214	Interrupted Infusion of Echocardiographic Contrast as a Basis for Accurate Measurement of Myocardial Perfusion: Ex Vivo Validation and Analysis Procedures. Journal of the American Society of Echocardiography, 2005, 18, 1312-1320.	2.8	6
215	Color Encoding of Endocardial Motion Improves the Interpretation of Contrast-enhanced Echocardiographic Stress Tests by Less-experienced Readers. Journal of the American Society of Echocardiography, 2006, 19, 48-54.	2.8	6
216	Three-Dimensional Echocardiographic Evaluation of Myocardial Perfusion. Cardiology Clinics, 2007, 25, 273-282.	2.2	6

#	Article	IF	CITATIONS
217	Diagnostic Value of Parametric Imaging of Left Ventricular Wall Motion From Contrast-Enhanced Echocardiograms in Patients With Poor Acoustic Windows. Journal of the American Society of Echocardiography, 2009, 22, 276-283.	2.8	6
218	Leaflet-Chordal Relations in Patients with Primary and Secondary Mitral Regurgitation. Journal of the American Society of Echocardiography, 2015, 28, 1302-1308.	2.8	6
219	Residual native left ventricular function optimization using quantitative 3D echocardiographic assessment of rotational mechanics in patients with left ventricular assist devices. Echocardiography, 2018, 35, 1606-1615.	0.9	6
220	Digital path-dependent recompensation of contrast-enhanced echocardiographic images. Ultrasound in Medicine and Biology, 1992, 18, 831-842.	1.5	5
221	Color Kinesis. Echocardiography, 1999, 16, 95-103.	0.9	5
222	Quantitative Echocardiographic Evaluation of Myocardial Perfusion Using Interrupted Contrast Infusion Technique: In Vivo Validation Studies and Feasibility in Human Beings. Journal of the American Society of Echocardiography, 2005, 18, 1304-1311.	2.8	5
223	Are Trabeculae and Papillary Muscles an Integral Part of Cardiac Anatomy. JACC: Cardiovascular Imaging, 2012, 5, 1124-1126.	5.3	5
224	Role of Perfusion at Rest in the Diagnosis of Myocardial Infarction Using Vasodilator Stress Cardiovascular Magnetic Resonance. American Journal of Cardiology, 2016, 117, 1072-1077.	1.6	5
225	3D echocardiographic global longitudinal strain can identify patients with mildly-to-moderately reduced ejection fraction at higher cardiovascular risk. International Journal of Cardiovascular Imaging, 2019, 35, 1573-1579.	1.5	5
226	Contrast-enhanced echocardiographic measurement of longitudinal strain: accuracy and its relationship with image quality. International Journal of Cardiovascular Imaging, 2020, 36, 431-439.	1.5	5
227	Large high-density lipoprotein particle number is independently associated with microvascular function in patients with well-controlled low-density lipoprotein concentration: A vasodilator stress magnetic resonance perfusion study. Journal of Clinical Lipidology, 2016, 10, 314-322.	1.5	4
228	Update on Computed Tomography Myocardial Perfusion Imaging. Current Cardiovascular Imaging Reports, 2016, 9, 1.	0.6	4
229	Objective selection of short-axis slices for automated quantification of left ventricular size and function by cardiovascular magnetic resonance. Clinical Imaging, 2016, 40, 617-623.	1.5	4
230	Three-dimensional quantification of myocardial perfusion during regadenoson stress computed tomography. European Journal of Radiology, 2016, 85, 885-892.	2.6	4
231	Hemodynamic impact of coronary stenosis using computed tomography: comparison between noninvasive fractional flow reserve and 3D fusion of coronary angiography with stress myocardial perfusion. International Journal of Cardiovascular Imaging, 2019, 35, 1733-1743.	1.5	4
232	Improved visualization of the coronary arteries using motion correction during vasodilator stress CT myocardial perfusion imaging. European Journal of Radiology, 2019, 114, 1-5.	2.6	4
233	Echocardiographic evaluation of the effects of sacubitril–valsartan on vascular properties in heart failure patients. International Journal of Cardiovascular Imaging, 2020, 36, 271-278.	1.5	4
234	Prevalence of Clinically Important Abnormalities Found on Transthoracic Echocardiography Ordered for Indication of Heart Murmur Found on Physical Examination. Journal of the American Society of Echocardiography, 2020, 33, 900-901.	2.8	4

#	Article	IF	CITATIONS
235	Use of Contrast Enhancement for the Assessment of Left Ventricular Function. Echocardiography, 2003, 20, 637-642.	0.9	3
236	Echocardiographic Quantification of Left Ventricular Volume: What Can We Do Better?. Journal of the American Society of Echocardiography, 2008, 21, 998-1000.	2.8	3
237	Outflow Cannula Systolic Slope in Patients With Left Ventricular Assist Devices: A Novel Marker of Myocardial Contractility. ASAIO Journal, 2019, 65, 160-166.	1.6	3
238	Short-Term Ventricular Structural Changes Following Left Ventricular Assist Device Implantation. ASAIO Journal, 2021, 67, 169-176.	1.6	3
239	Can echocardiographic assessment of diastolic function be automated?. International Journal of Cardiovascular Imaging, 2022, 38, 965-974.	1.5	3
240	Computerized evaluation of echocardiographic stress tests in patients with poorly visualized endocardium using analysis of color-encoded contrast-enhanced imagesâ~†. European Journal of Echocardiography, 2006, 7, 122-133.	2.3	2
241	Regadenoson cardiovascular magnetic resonance myocardial perfusion imaging predicts need for future revascularization. Journal of Cardiovascular Magnetic Resonance, 2012, 14, .	3.3	2
242	Comparison of Twelve-Lead Electrocardiogram Using a Glove-Based Recording System With Standard Methodology. American Journal of Cardiology, 2013, 112, 895-903.	1.6	2
243	Aortic annulus measurements: should we use multislice computed tomography, 3D echocardiography or MRI?. Expert Review of Cardiovascular Therapy, 2013, 11, 1-3.	1.5	2
244	One Size Does Not Fit All. JACC: Cardiovascular Imaging, 2015, 8, 666-668.	5.3	2
245	Quantitative detection of changes in regional wall motion using real time strain-encoded cardiovascular magnetic resonance. Magnetic Resonance Imaging, 2020, 66, 193-198.	1.8	2
246	Utility of transillumination and transparency renderings in 3D transthoracic imaging. International Journal of Cardiovascular Imaging, 2022, 38, 141-147.	1.5	2
247	Relation of Myocardial Perfusion Reserve and Left Ventricular Ejection Fraction in Ischemic and Nonischemic Cardiomyopathy. American Journal of Cardiology, 2022, 174, 143-150.	1.6	2
248	Effects of Temperature on Albunex and FS069 Echocardiographic Contrast Agents: In Vitro Investigation Using Ultrasonic Irradiation. Echocardiography, 1997, 14, 39-49.	0.9	1
249	Feasibility of regional and global left ventricular shape analysis from real-time 3d echocardiography. , 2009, 2009, 3641-4.		1
250	Three-dimensional echocardiography based evaluation of right ventricular remodeling in patients with pressure overload. , 2015, , .		1
251	Authors' Reply. Journal of the American Society of Echocardiography, 2015, 28, 850-851.	2.8	1
252	Abnormalities in aortic properties: a potential link between left ventricular diastolic function and ventricular—aortic coupling in sickle cell disease. International Journal of Cardiovascular Imaging, 2016, 32, 965-973.	1.5	1

#	Article	IF	CITATIONS
253	Three-Dimensional Echocardiography for Evaluation of the Right Ventricle—Updates on Image Acquisition and Analysis. Current Cardiovascular Imaging Reports, 2018, 11, 1.	0.6	1
254	Is Echocardiography Ready to Become Less Subjective?. Echocardiography, 1999, 16, 41-41.	0.9	0
255	An Update on Emerging Echocardiographic Technologies. Echocardiography, 2003, 20, 621-621.	0.9	0
256	Can Echocardiography Provide Combined Assessment of Left Ventricular Function and Myocardial Perfusion?. , 2004, , 219-233.		0
257	Echocardiographic techniques for the evaluation of left ventricular dyssynchrony. Current Cardiovascular Imaging Reports, 2009, 2, 343-349.	0.6	0
258	Feasibility of automated frame-by-frame myocardial segmentation as a basis for quantification of first-pass perfusion images. Journal of Cardiovascular Magnetic Resonance, 2010, 12, .	3.3	0
259	Left ventricular-aortic coupling in sickle cell disease underlies diastolic dysfunction. , 2015, , .		0
260	Semi-quantitative assessment of resting perfusion in chronic myocardial infarction. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P129.	3.3	0
261	Three-dimensional changes in regional right ventricular curvature and function in tetralogy of fallot. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P214.	3.3	0
262	Objective selection of short-axis slices for automated quantification of left ventricular size and function by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2015, 17, .	3.3	0
263	Diagnostic performance of regadenoson stress CMR for detection of coronary artery disease. Journal of Cardiovascular Magnetic Resonance, 2015, 17, .	3.3	0
264	Continuing Medical Education Activity in <i>Echocardiography</i> . Echocardiography, 2016, 33, 695-695.	0.9	0
265	The Evolution of Three-Dimensional Echocardiography: From the Initial Concept to Real-Time Imaging. , 2019, , 1-8.		0
266	Regression of Cardiac Amyloidosis Following Autologous Stem Cell Transplant in Patients With Atypical Magnetic Resonance Imaging Findings. Revista Espanola De Cardiologia (English Ed), 2019, 72, 790-792.	0.6	0
267	Advanced Evaluation of LV Function with 3D Echocardiography. , 2010, , 45-53.		0
268	The Evolution of Three-Dimensional Echocardiography: How Did It Happen. , 2010, , 1-8.		0
269	Three-Dimensional Transthoracic and Transesophageal Echocardiography. , 2011, , 381-385.		0
270	Automated Assessment of Left Ventricular Function with Acoustic Quantification: Signal Averaging Revisited. Developments in Cardiovascular Medicine, 1997, , 65-79.	0.1	0