Jeffrey Schlom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1404807/publications.pdf Version: 2024-02-01

		9254	11601
350	23,917	74	135
papers	citations	h-index	g-index
354	354	354	18311
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Dual inhibition of TGFâ€Î² and PD‣1: a novel approach to cancer treatment. Molecular Oncology, 2022, 16, 2117-2134.	2.1	53
2	A Randomized Phase II Trial of mFOLFOX6 + Bevacizumab Alone or with AdCEA Vaccine + Avelumab Immunotherapy for Untreated Metastatic Colorectal Cancer. Oncologist, 2022, 27, 198-209.	1.9	18
3	A randomized phase 2 study of bicalutamide with or without metformin for biochemical recurrence in overweight or obese prostate cancer patients (BIMET-1). Prostate Cancer and Prostatic Diseases, 2022, 25, 735-740.	2.0	12
4	OUP accepted manuscript. Oncologist, 2022, 27, e353-e356.	1.9	2
5	Peptide-based vaccines. , 2022, , 155-173.		0
6	The immunocytokine M9241 in the treatment of prostate cancer (PCa): Clinical and immune data from a phase 1 study Journal of Clinical Oncology, 2022, 40, 127-127.	0.8	2
7	Immunotherapy to prevent progression on active surveillance study (IPASS): A phase II, randomized, double-blind, controlled trial of PROSTVAC in prostate cancer patients who are candidates for active surveillance Journal of Clinical Oncology, 2022, 40, 249-249.	0.8	0
8	Evaluating the optimal sequence of immunotherapy and docetaxel in men with metastatic castration-sensitive prostate cancer Journal of Clinical Oncology, 2022, 40, 130-130.	0.8	2
9	Safety evaluation of M9241 in combination with docetaxel in metastatic prostate cancer Journal of Clinical Oncology, 2022, 40, 93-93.	0.8	3
10	Remodeling the tumor microenvironment via blockade of LAIR-1 and TGF-β signaling enables PD-L1–mediated tumor eradication. Journal of Clinical Investigation, 2022, 132, .	3.9	50
11	Cure of syngeneic carcinomas with targeted IL-12 through obligate reprogramming of lymphoid and myeloid immunity. JCI Insight, 2022, 7, .	2.3	5
12	Immune correlates of clinical parameters in patients with HPV-associated malignancies treated with bintrafusp alfa. , 2022, 10, e004601.		8
13	Preclinical and clinical studies of bintrafusp alfa, a novel bifunctional anti-PD-L1/TGFβRII agent: Current status. Experimental Biology and Medicine, 2022, 247, 1124-1134.	1.1	7
14	Phase II evaluation of the combination of PDS0101, M9241, and bintrafusp alfa in patients with HPV 16+ malignancies Journal of Clinical Oncology, 2022, 40, 2518-2518.	0.8	4
15	Combining IL-12 immunocytokine (M9241) with docetaxel in metastatic prostate cancer: A phase I study Journal of Clinical Oncology, 2022, 40, e17033-e17033.	0.8	1
16	Combination therapies utilizing neoepitope-targeted vaccines. Cancer Immunology, Immunotherapy, 2021, 70, 875-885.	2.0	12
17	Analysis of the tumor microenvironment and anti-tumor efficacy of subcutaneous vs systemic delivery of the bifunctional agent bintrafusp alfa. Oncolmmunology, 2021, 10, 1915561.	2.1	5
18	Vaccine Increases the Diversity and Activation of Intratumoral T Cells in the Context of Combination Immunotherapy. Cancers, 2021, 13, 968.	1.7	9

#	Article	IF	CITATIONS
19	Differential combination immunotherapy requirements for inflamed (warm) tumors versus T cell excluded (cool) tumors: engage, expand, enable, and evolve. , 2021, 9, e001691.		34
20	Randomized, Double-Blind, Placebo-Controlled Phase II Study of Yeast-Brachyury Vaccine (GI-6301) in Combination with Standard-of-Care Radiotherapy in Locally Advanced, Unresectable Chordoma. Oncologist, 2021, 26, e847-e858.	1.9	31
21	Clinical and immunologic impact of short-course enzalutamide alone and with immunotherapy in non-metastatic castration sensitive prostate cancer. , 2021, 9, e001556.		9
22	Phase I study of a multitargeted recombinant Ad5 PSA/MUC-1/brachyury-based immunotherapy vaccine in patients with metastatic castration-resistant prostate cancer (mCRPC). , 2021, 9, e002374.		25
23	Interrogation of the cellular immunome of cancer patients with regard to the COVID-19 pandemic. , 2021, 9, e002087.		7
24	Chimeric antigen receptor engineered NK cellular immunotherapy overcomes the selection of T-cell escape variant cancer cells. , 2021, 9, e002128.		20
25	Characterization of recombinant gorilla adenovirus HPV therapeutic vaccine PRGN-2009. JCI Insight, 2021, 6, .	2.3	12
26	A phase 1 open label trial of intravenous administration of MVA-BN-Brachyury vaccine in patients with advanced cancer Journal of Clinical Oncology, 2021, 39, 2617-2617.	0.8	0
27	Phase II evaluation of the triple combination of PDS0101, M9241, and bintrafusp alfa in patients with HPV 16 positive malignancies Journal of Clinical Oncology, 2021, 39, 2501-2501.	0.8	14
28	NHS-IL12, a Tumor-Targeting Immunocytokine. ImmunoTargets and Therapy, 2021, Volume 10, 155-169.	2.7	23
29	A phase I study of bintrafusp alfa (M7824) and NHS-IL12 (M9241) alone and in combination with stereotactic body radiation therapy (SBRT) in adults with metastatic non-prostate genitourinary malignancies Journal of Clinical Oncology, 2021, 39, TPS4599-TPS4599.	0.8	3
30	A phase I/II study of bintrafusp alfa and NHS-IL12 in combination with docetaxel in adults with metastatic castration sensitive (mCSPC) and castration-resistant prostate cancer (mCRPC) Journal of Clinical Oncology, 2021, 39, TPS5096-TPS5096.	0.8	3
31	First-in-human phase I/II trial of PRGN-2009 vaccine as monotherapy or with bintrafusp alfa in patients with recurrent/metastatic (R/M) human papillomavirus (HPV)-associated cancers (HPVC) and as neoadjuvant/induction therapy in locoregionally advanced (LA) HPV oropharyngeal (OP) and sinonasal (SN) squamous cell cancer (SCC)., Journal of Clinical Oncology, 2021, 39, TPS6092-TPS6092.	0.8	2
32	Preclinical study of a novel therapeutic vaccine for recurrent respiratory papillomatosis. Npj Vaccines, 2021, 6, 86.	2.9	4
33	Identification and validation of expressed HLA-binding breast cancer neoepitopes for potential use in individualized cancer therapy. , 2021, 9, e002605.		7
34	Immunology of Lynch Syndrome. Current Oncology Reports, 2021, 23, 96.	1.8	10
35	Exploiting off-target effects of estrogen deprivation to sensitize estrogen receptor negative breast cancer to immune killing. , 2021, 9, e002258.		11
36	Tumour-targeted interleukin-12 and entinostat combination therapy improves cancer survival by reprogramming the tumour immune cell landscape. Nature Communications, 2021, 12, 5151.	5.8	41

#	Article	IF	CITATIONS
37	Dual PD-L1 and TGF-b blockade in patients with recurrent respiratory papillomatosis. , 2021, 9, e003113.		12
38	Phase 1 open-label trial of intravenous administration of MVA-BN-brachyury-TRICOM vaccine in patients with advanced cancer. , 2021, 9, e003238.		19
39	Therapy of Established Tumors with Rationally Designed Multiple Agents Targeting Diverse Immune–Tumor Interactions: Engage, Expand, Enable. Cancer Immunology Research, 2021, 9, 239-252.	1.6	11
40	Combination Therapies for HPV-Associated Malignancies. Journal of Clinical & Cellular Immunology, 2021, 12, .	1.5	0
41	Translational Advances in Cancer Prevention Agent Development (TACPAD) Virtual Workshop on Immunomodulatory Agents: Report. Journal of Cancer Prevention, 2021, 26, 309-317.	0.8	1
42	A Phase I Trial Using a Multitargeted Recombinant Adenovirus 5 (CEA/MUC1/Brachyury)-Based Immunotherapy Vaccine Regimen in Patients with Advanced Cancer. Oncologist, 2020, 25, 479-e899.	1.9	39
43	Cooperative Immune-Mediated Mechanisms of the HDAC Inhibitor Entinostat, an IL15 Superagonist, and a Cancer Vaccine Effectively Synergize as a Novel Cancer Therapy. Clinical Cancer Research, 2020, 26, 704-716.	3.2	26
44	Inhibition of MDSC Trafficking with SX-682, a CXCR1/2 Inhibitor, Enhances NK-Cell Immunotherapy in Head and Neck Cancer Models. Clinical Cancer Research, 2020, 26, 1420-1431.	3.2	151
45	The Development of Next-generation PBMC Humanized Mice for Preclinical Investigation of Cancer Immunotherapeutic Agents. Anticancer Research, 2020, 40, 5329-5341.	0.5	34
46	The Importance of Cellular Immunity in the Development of Vaccines and Therapeutics for COVID-19. Journal of Infectious Diseases, 2020, 222, 1435-1438.	1.9	2
47	Early changes in immune cell subsets with corticosteroids in patients with solid tumors: implications for COVID-19 management. , 2020, 8, e001019.		13
48	A Case Report of Sequential Use of a Yeast-CEA Therapeutic Cancer Vaccine and Anti-PD-L1 Inhibitor in Metastatic Medullary Thyroid Cancer. Frontiers in Endocrinology, 2020, 11, 490.	1.5	14
49	<p>Therapeutic Vaccines for HPV-Associated Malignancies</p> . ImmunoTargets and Therapy, 2020, Volume 9, 167-200.	2.7	66
50	Bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1, in patients with human papillomavirus-associated malignancies. , 2020, 8, e001395.		79
51	Overcoming hypoxia-induced functional suppression of NK cells. , 2020, 8, e000246.		44
52	The Use of a Humanized NSG-β2mâ^'/â^' Model for Investigation of Immune and Anti-tumor Effects Mediated by the Bifunctional Immunotherapeutic Bintrafusp Alfa. Frontiers in Oncology, 2020, 10, 549.	1.3	19
53	Immunomodulation to enhance the efficacy of an HPV therapeutic vaccine. , 2020, 8, e000612.		50
54	Rationale for IL-15 superagonists in cancer immunotherapy. Expert Opinion on Biological Therapy, 2020, 20, 705-709.	1.4	46

#	Article	IF	CITATIONS
55	Phase I Trial of a Modified Vaccinia Ankara Priming Vaccine Followed by a Fowlpox Virus Boosting Vaccine Modified to Express Brachyury and Costimulatory Molecules in Advanced Solid Tumors. Oncologist, 2020, 25, 560.	1.9	17
56	Dual targeting of TGF-β and PD-L1 via a bifunctional anti-PD-L1/TGF-βRII agent: status of preclinical and clinical advances. , 2020, 8, e000433.		166
57	Simultaneous inhibition of CXCR1/2, TGF- \hat{i}^2 , and PD-L1 remodels the tumor and its microenvironment to drive antitumor immunity. , 2020, 8, e000326.		54
58	Neoadjuvant PROSTVAC prior to radical prostatectomy enhances T-cell infiltration into the tumor immune microenvironment in men with prostate cancer. , 2020, 8, e000655.		41
59	Functional and mechanistic advantage of the use of a bifunctional anti-PD-L1/IL-15 superagonist. , 2020, 8, e000493.		27
60	Improving the Odds in Advanced Breast Cancer With Combination Immunotherapy: Stepwise Addition of Vaccine, Immune Checkpoint Inhibitor, Chemotherapy, and HDAC Inhibitor in Advanced Stage Breast Cancer. Frontiers in Oncology, 2020, 10, 581801.	1.3	11
61	PD-L1 targeting high-affinity NK (t-haNK) cells induce direct antitumor effects and target suppressive MDSC populations. , 2020, 8, e000450.		79
62	A randomized, double-blind, phase II clinical trial of GI-6301 (yeast-brachyury vaccine) versus placebo in combination with standard of care definitive radiotherapy in locally advanced, unresectable, chordoma Journal of Clinical Oncology, 2020, 38, 11527-11527.	0.8	8
63	Tumor control via targeting PD-L1 with chimeric antigen receptor modified NK cells. ELife, 2020, 9, .	2.8	32
64	First-in-Human Phase I Trial of a Tumor-Targeted Cytokine (NHS-IL12) in Subjects with Metastatic Solid Tumors. Clinical Cancer Research, 2019, 25, 99-109.	3.2	116
65	Efficient Tumor Clearance and Diversified Immunity through Neoepitope Vaccines and Combinatorial Immunotherapy. Cancer Immunology Research, 2019, 7, 1359-1370.	1.6	22
66	Efficacy and tolerability of anti-programmed death-ligand 1 (PD-L1) antibody (Avelumab) treatment in advanced thymoma. , 2019, 7, 269.		94
67	Phase I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors. , 2019, 7, 240.		162
68	Direct and antibody-dependent cell-mediated cytotoxicity of head and neck squamous cell carcinoma cells by high-affinity natural killer cells. Oral Oncology, 2019, 90, 38-44.	0.8	22
69	Temporal changes within the (bladder) tumor microenvironment that accompany the therapeutic effects of the immunocytokine NHS-IL12. , 2019, 7, 150.		20
70	A Phase I Dose-Escalation Trial of BN-CV301, a Recombinant Poxviral Vaccine Targeting MUC1 and CEA with Costimulatory Molecules. Clinical Cancer Research, 2019, 25, 4933-4944.	3.2	45
71	Safety and clinical activity of PD-L1 blockade in patients with aggressive recurrent respiratory papillomatosis. , 2019, 7, 119.		35
72	Mechanisms involved in IL-15 superagonist enhancement of anti-PD-L1 therapy. , 2019, 7, 82.		76

#	Article	IF	CITATIONS
73	Pre-existing antiacetylcholine receptor autoantibodies and B cell lymphopaenia are associated with the development of myositis in patients with thymoma treated with avelumab, an immune checkpoint inhibitor targeting programmed death-ligand 1. Annals of the Rheumatic Diseases, 2019, 78, 150-152.	0.5	97
74	The multi-functionality of N-809, a novel fusion protein encompassing anti-PD-L1 and the IL-15 superagonist fusion complex. Oncolmmunology, 2019, 8, e1532764.	2.1	30
75	Abstract CT075: Phase I evaluation of M7824, a bifunctional fusion protein targeting TGF- \hat{I}^2 and PD-L1, in patients with human papillomavirus (HPV)-associated malignancies. , 2019, , .		13
76	Inhibiting myeloid-derived suppressor cell trafficking enhances T cell immunotherapy. JCI Insight, 2019, 4, .	2.3	168
77	Efficient ADCC killing of meningioma by avelumab and a high-affinity natural killer cell line, haNK. JCI Insight, 2019, 4, .	2.3	40
78	An IL-15 superagonist/IL-15Rα fusion complex protects and rescues NK cell-cytotoxic function from TGF-β1-mediated immunosuppression. Cancer Immunology, Immunotherapy, 2018, 67, 675-689.	2.0	55
79	M7824, a novel bifunctional anti-PD-L1/TGFβ Trap fusion protein, promotes anti-tumor efficacy as monotherapy and in combination with vaccine. Oncolmmunology, 2018, 7, e1426519.	2.1	162
80	Phase I Trial of M7824 (MSB0011359C), a Bifunctional Fusion Protein Targeting PD-L1 and TGFβ, in Advanced Solid Tumors. Clinical Cancer Research, 2018, 24, 1287-1295.	3.2	304
81	Morphological changes induced by intraprostatic PSA-based vaccine in prostate cancer biopsies (phase) Tj ETQq1	1,0,78431 1,1	.4grgBT /Ove
82	Stereotactic Ablative Radiation Therapy Induces Systemic Differences in Peripheral Blood Immunophenotype Dependent on Irradiated Site. International Journal of Radiation Oncology Biology Physics, 2018, 101, 1259-1270.	0.4	54
83	A potential therapy for chordoma via antibody-dependent cell-mediated cytotoxicity employing NK or high-affinity NK cells in combination with cetuximab. Journal of Neurosurgery, 2018, 128, 1419-1427.	0.9	17
84	Anti-PD-L1/TGFβR2 (M7824) fusion protein induces immunogenic modulation of human urothelial carcinoma cell lines, rendering them more susceptible to immune-mediated recognition and lysis. Urologic Oncology: Seminars and Original Investigations, 2018, 36, 93.e1-93.e11.	0.8	40
85	EXTH-63. EFFICIENT ADCC-MEDIATED KILLING OF MALIGNANT MENINGIOMA CELLS USING AVELUMAB AND AN ENGINEERED HIGH AVIDITY NATURAL KILLER CELL LINE, haNK. Neuro-Oncology, 2018, 20, vi98-vi98.	0.6	0
86	Vaccines as an Integral Component of Cancer Immunotherapy. JAMA - Journal of the American Medical Association, 2018, 320, 2195.	3.8	27
87	A Randomized, Double-blind, Phase II Trial of PSA-TRICOM (PROSTVAC) in Patients with Localized Prostate Cancer: The Immunotherapy to Prevent Progression on Active Surveillance Study. European Urology Focus, 2018, 4, 636-638.	1.6	16
88	Activity of durvalumab plus olaparib in metastatic castration-resistant prostate cancer in men with and without DNA damage repair mutations. , 2018, 6, 141.		214
89	Epigenetic priming of both tumor and NK cells augments antibody-dependent cellular cytotoxicity elicited by the anti-PD-L1 antibody avelumab against multiple carcinoma cell types. Oncolmmunology, 2018, 7, e1466018.	2.1	51
90	Inhibition of WEE1 kinase and cell cycle checkpoint activation sensitizes head and neck cancers to natural killer cell therapies. , 2018, 6, 59.		43

#	Article	IF	CITATIONS
91	Immunotherapy for biochemically recurrent prostate cancer Journal of Clinical Oncology, 2018, 36, 215-215.	0.8	5
92	Immunotherapy utilizing the combined use of NK and ADCC mediating agents with PARP inhibition Journal of Clinical Oncology, 2018, 36, 5021-5021.	0.8	0
93	Analyses of the peripheral immunome following multiple administrations of avelumab, a human IgG1 anti-PD-L1 monoclonal antibody. , 2017, 5, 20.		78
94	ADCC employing an NK cell line (haNK) expressing the high affinity CD16 allele with avelumab, an anti-PD-L1 antibody. International Journal of Cancer, 2017, 141, 583-593.	2.3	37
95	Identification and characterization of enhancer agonist human cytotoxic T-cell epitopes of the human papillomavirus type 16 (HPV16) E6/E7. Vaccine, 2017, 35, 2605-2611.	1.7	17
96	Avelumab for metastatic or locally advanced previously treated solid tumours (JAVELIN Solid Tumor): a phase 1a, multicohort, dose-escalation trial. Lancet Oncology, The, 2017, 18, 587-598.	5.1	261
97	A novel bifunctional anti-PD-L1/TGF-β Trap fusion protein (M7824) efficiently reverts mesenchymalization of human lung cancer cells. OncoImmunology, 2017, 6, e1349589.	2.1	137
98	Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer. , 2017, 5, 22.		217
99	Combination therapy with an OX40L fusion protein and a vaccine targeting the transcription factor twist inhibits metastasis in a murine model of breast cancer. Oncotarget, 2017, 8, 90825-90841.	0.8	18
100	Phase I Study of a Poxviral TRICOM-Based Vaccine Directed Against the Transcription Factor Brachyury. Clinical Cancer Research, 2017, 23, 6833-6845.	3.2	51
101	Abstract 594: Dual targeting of TGFb and PD-L1 promotes potent anti-tumor efficacy in multiple murine models of solid carcinomas. Cancer Research, 2017, 77, 594-594.	0.4	7
102	Preliminary results from a phase 1 trial of M7824 (MSB0011359C), a bifunctional fusion protein targeting PD-L1 and TGF-β, in advanced solid tumors Journal of Clinical Oncology, 2017, 35, 3006-3006.	0.8	21
103	Near infrared photoimmunotherapy with avelumab, an anti-programmed death-ligand 1 (PD-L1) antibody. Oncotarget, 2017, 8, 8807-8817.	0.8	68
104	Enhanced antitumor effects by combining an IL-12/anti-DNA fusion protein with avelumab, an anti-PD-L1 antibody. Oncotarget, 2017, 8, 20558-20571.	0.8	49
105	Analyses of functions of an anti-PD-L1/TGFβR2 bispecific fusion protein (M7824). Oncotarget, 2017, 8, 75217-75231.	0.8	44
106	Enhanced immunotherapy by combining a vaccine with a novel murine GITR ligand fusion protein. Oncotarget, 2017, 8, 73469-73482.	0.8	9
107	Enhanced killing of chordoma cells by antibody-dependent cell-mediated cytotoxicity employing the novel anti-PD-L1 antibody avelumab. Oncotarget, 2016, 7, 33498-33511.	0.8	85
108	IL-15 superagonist/IL-15RαSushi-Fc fusion complex (IL-15SA/IL-15RαSu-Fc; ALT-803) markedly enhances specific subpopulations of NK and memory CD8+ T cells, and mediates potent anti-tumor activity against murine breast and colon carcinomas. Oncotarget, 2016, 7, 16130-16145.	0.8	138

#	Article	IF	CITATIONS
109	The IDO1 selective inhibitor epacadostat enhances dendritic cell immunogenicity and lytic ability of tumor antigen-specific T cells. Oncotarget, 2016, 7, 37762-37772.	0.8	96
110	An NK cell line (haNK) expressing high levels of granzyme and engineered to express the high affinity CD16 allele. Oncotarget, 2016, 7, 86359-86373.	0.8	143
111	A fully human IgG1 antiâ€PDâ€L1 MAb in an <i>in vitro</i> assay enhances antigenâ€specific Tâ€cell responses. Clinical and Translational Immunology, 2016, 5, e83.	1.7	52
112	A phase I study of recombinant (r) vaccinia-CEA(6D)-TRICOM and rFowlpox-CEA(6D)-TRICOM vaccines with GM-CSF and IFN-α-2b in patients with CEA-expressing carcinomas. Cancer Immunology, Immunotherapy, 2016, 65, 1353-1364.	2.0	31
113	Analyses of Pretherapy Peripheral Immunoscore and Response to Vaccine Therapy. Cancer Immunology Research, 2016, 4, 755-765.	1.6	36
114	Malignant Mesothelioma Effusions Are Infiltrated byÂCD3+ T Cells Highly Expressing PD-L1 and the PD-L1+ Tumor Cells within These Effusions Are Susceptible to ADCC by the Anti–PD-L1 Antibody Avelumab. Journal of Thoracic Oncology, 2016, 11, 1993-2005.	0.5	96
115	Analyses of 123 Peripheral Human Immune Cell Subsets: Defining Differences with Age and between Healthy Donors and Cancer Patients Not Detected in Analysis of Standard Immune Cell Types. Journal of Circulating Biomarkers, 2016, 5, 5.	0.8	50
116	The association of clinical outcome and peripheral T-cell subsets in metastatic colorectal cancer patients receiving first-line FOLFIRI plus bevacizumab therapy. Oncolmmunology, 2016, 5, e1188243.	2.1	26
117	Systemic Immunotherapy of Non-Muscle Invasive Mouse Bladder Cancer with Avelumab, an Anti–PD-L1 Immune Checkpoint Inhibitor. Cancer Immunology Research, 2016, 4, 452-462.	1.6	76
118	Abstract 1480: Systemic immunotherapeutic efficacy of an immunocytokine, NHS-mulL12, in a superficial murine orthotopic bladder cancer model. Cancer Research, 2016, 76, 1480-1480.	0.4	3
119	Safety and clinical activity of anti-programmed death-ligand 1 (PD-L1) antibody (ab) avelumab (MSB0010718C) in advanced thymic epithelial tumors (TETs) Journal of Clinical Oncology, 2016, 34, e20106-e20106.	0.8	7
120	Samarium-153-EDTMP (Quadramet®) with or without vaccine in metastatic castration-resistant prostate cancer: A randomized Phase 2 trial. Oncotarget, 2016, 7, 69014-69023.	0.8	38
121	Antibody-Dependent Cellular Cytotoxicity Activity of a Novel Anti–PD-L1 Antibody Avelumab (MSB0010718C) on Human Tumor Cells. Cancer Immunology Research, 2015, 3, 1148-1157.	1.6	391
122	Insights on Peptide Vaccines in Cancer Immunotherapy. Cancer Drug Discovery and Development, 2015, , 1-27.	0.2	2
123	Docetaxel Alone or in Combination With a Therapeutic Cancer Vaccine (PANVAC) in Patients With Metastatic Breast Cancer. JAMA Oncology, 2015, 1, 1087.	3.4	80
124	Phase I Trial of a Yeast-Based Therapeutic Cancer Vaccine (GI-6301) Targeting the Transcription Factor Brachyury. Cancer Immunology Research, 2015, 3, 1248-1256.	1.6	118
125	The impact of leukapheresis on immune-cell number and function in patients with advanced cancer. Cancer Immunology, Immunotherapy, 2015, 64, 1429-1435.	2.0	2
126	Antibody dependent cellular cytotoxicity activity of a novel anti-PD-L1 antibody, avelumab (MSB0010718C), on human tumor cells Journal of Clinical Oncology, 2015, 33, 3038-3038.	0.8	2

#	Article	IF	CITATIONS
127	Pharmacokinetic profile and receptor occupancy of avelumab (MSB0010718C), an anti-PD-L1 monoclonal antibody, in a phase I, open-label, dose escalation trial in patients with advanced solid tumors Journal of Clinical Oncology, 2015, 33, 3055-3055.	0.8	19
128	The IDO inhibitor INCB024360 to enhance dendritic cell immunogenicity and anti-tumor immunity in vitro Journal of Clinical Oncology, 2015, 33, e14012-e14012.	0.8	1
129	Prospect: A randomized double-blind phase 3 efficacy study of PROSTVAC-VF immunotherapy in men with asymptomatic/minimally symptomatic metastatic castration-resistant prostate cancer Journal of Clinical Oncology, 2015, 33, TPS5081-TPS5081.	0.8	5
130	Impact of standard chemotherapy on peripheral blood immune cell subsets in metastatic colorectal cancer Journal of Clinical Oncology, 2015, 33, 597-597.	0.8	1
131	Aberrant expression of the embryonic transcription factor brachyury in human tumors detected with a novel rabbit monoclonal antibody. Oncotarget, 2015, 6, 4853-4862.	0.8	24
132	ABO blood type correlates with survival on prostate cancer vaccine therapy. Oncotarget, 2015, 6, 32244-32256.	0.8	18
133	The generation and analyses of a novel combination of recombinant adenovirus vaccines targeting three tumor antigens as an immunotherapeutic. Oncotarget, 2015, 6, 31344-31359.	0.8	32
134	Combining active immunotherapy and immune checkpoint inhibitors in prostate cancer Journal of Clinical Oncology, 2015, 33, e14008-e14008.	0.8	2
135	The immunocytokine NHS-IL12 as a potential cancer therapeutic. Oncotarget, 2014, 5, 1869-1884.	0.8	116
136	Pan-Bcl-2 Inhibitor, GX15-070 (Obatoclax), Decreases Human T Regulatory Lymphocytes while Preserving Effector T Lymphocytes: A Rationale for Its Use in Combination Immunotherapy. Journal of Immunology, 2014, 192, 2622-2633.	0.4	25
137	Therapeutic Cancer Vaccines. Advances in Cancer Research, 2014, 121, 67-124.	1.9	68
138	Potential utility of the pan-Bcl-2 inhibitor GX15–070 (obatoclax) in cancer immunotherapy. Oncolmmunology, 2014, 3, e29351.	2.1	5
139	The Use of T Cell Costimulation to Enhance the Immunogenicity of Tumors. , 2014, , 315-334.		Ο
140	Phase I trial of a recombinant yeast-CEA vaccine (GI-6207) in adults with metastatic CEA-expressing carcinoma. Cancer Immunology, Immunotherapy, 2014, 63, 225-234.	2.0	86
141	Identification and characterization of agonist epitopes of the MUC1-C oncoprotein. Cancer Immunology, Immunotherapy, 2014, 63, 161-174.	2.0	23
142	Humoral response to a viral glycan correlates with survival on PROSTVAC-VF. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1749-58.	3.3	41
143	Overexpression of the EMT Driver Brachyury in Breast Carcinomas: Association With Poor Prognosis. Journal of the National Cancer Institute, 2014, 106, .	3.0	65
144	Identification and characterization of a cytotoxic T-lymphocyte agonist epitope of brachyury, a transcription factor involved in epithelial to mesenchymal transition and metastasis. Cancer Immunology, Immunotherapy, 2014, 63, 1307-1317.	2.0	23

#	Article	IF	CITATIONS
145	Identification by digital immunohistochemistry of intratumoral changes of immune infiltrates after vaccine in the absence of modifications of PBMC immune cell subsets. International Journal of Cancer, 2014, 135, 862-870.	2.3	5
146	Immune Impact Induced by PROSTVAC (PSA-TRICOM), a Therapeutic Vaccine for Prostate Cancer. Cancer Immunology Research, 2014, 2, 133-141.	1.6	115
147	Vaccine-Mediated Immunotherapy Directed against a Transcription Factor Driving the Metastatic Process. Cancer Research, 2014, 74, 1945-1957.	0.4	31
148	Intratumoral delivery of recombinant vaccinia virus encoding for ErbB2/Neu inhibits the growth of salivary gland carcinoma cells. Journal of Translational Medicine, 2014, 12, 122.	1.8	15
149	A combination trial of vaccine plus ipilimumab in metastatic castration-resistant prostate cancer patients: immune correlates. Cancer Immunology, Immunotherapy, 2014, 63, 407-418.	2.0	82
150	TRICOM Poxviral-Based Vaccines for the Treatment of Cancer. , 2014, , 291-327.		1
151	Phase I open-label, multiple ascending dose trial of MSB0010718C, an anti-PD-L1 monoclonal antibody, in advanced solid malignancies Journal of Clinical Oncology, 2014, 32, 3064-3064.	0.8	31
152	NCI experience using yeast-brachyury vaccine (GI-6301) in patients (pts) with advanced chordoma Journal of Clinical Oncology, 2014, 32, 3081-3081.	0.8	6
153	Effect of cabozantinib on immunosuppressive subsets in metastatic urothelial carcinoma Journal of Clinical Oncology, 2014, 32, 4501-4501.	0.8	28
154	A phase I study of a yeast-based therapeutic cancer vaccine, GI-6301, targeting brachyury in patients with metastatic carcinoma Journal of Clinical Oncology, 2014, 32, e14026-e14026.	0.8	2
155	A randomized, prospective, phase II study to determine the efficacy of BCG given in combination with panvac versus BCG alone in adults with high grade non-muscle invasive bladder cancer who failed at least one induction course of BCG Journal of Clinical Oncology, 2014, 32, TPS4590-TPS4590.	0.8	6
156	Recombinant cancer vaccines and new vaccine targets. Expert Review of Vaccines, 2013, 12, 1121-1124.	2.0	2
157	Recombinant TRICOM-based Therapeutic Cancer Vaccines. , 2013, , 309-331.		1
158	Phase I study of intraprostatic vaccine administration in men with locally recurrent or progressive prostate cancer. Cancer Immunology, Immunotherapy, 2013, 62, 1521-1531.	2.0	38
159	Serum Antibodies to Blood Group A Predict Survival on PROSTVAC-VF. Clinical Cancer Research, 2013, 19, 1290-1299.	3.2	50
160	Effect of Talactoferrin Alfa on the Immune System in Adults With Non‧mall Cell Lung Cancer. Oncologist, 2013, 18, 821-822.	1.9	9
161	Upâ€regulation of proliferative and migratory genes in regulatory T cells from patients with metastatic castrationâ€resistant prostate cancer. International Journal of Cancer, 2013, 133, 373-382.	2.3	31
162	Soluble CD27-Pool in Humans May Contribute to T Cell Activation and Tumor Immunity. Journal of Immunology, 2013, 190, 6250-6258.	0.4	59

#	Article	IF	CITATIONS
163	The role of soluble CD40L in immunosuppression. Oncolmmunology, 2013, 2, e22546.	2.1	24
164	Effects of conventional therapeutic interventions on the number and function of regulatory T cells. Oncolmmunology, 2013, 2, e27025.	2.1	148
165	A phase II randomized clinical trial of samarium-153 EDTMP (Sm-153) with or without PSA-TRICOM vaccine in metastatic castration-resistant prostate cancer (mCRPC) after docetaxel Journal of Clinical Oncology, 2013, 31, 102-102.	0.8	14
166	Immunological targeting of tumor cells undergoing an epithelial-mesenchymal transition via a recombinant brachyury-yeast vaccine. Oncotarget, 2013, 4, 1777-1790.	0.8	63
167	Safety profile of poxviral vaccines: NCI experience Journal of Clinical Oncology, 2013, 31, 85-85.	0.8	0
168	Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer. Cancers, 2012, 4, 1333-1348.	1.7	4
169	Brachyury, a Driver of the Epithelial–Mesenchymal Transition, Is Overexpressed in Human Lung Tumors: An Opportunity for Novel Interventions against Lung Cancer. Clinical Cancer Research, 2012, 18, 3868-3879.	3.2	112
170	Distinct Effects of Saracatinib on Memory CD8+ T Cell Differentiation. Journal of Immunology, 2012, 188, 4323-4333.	0.4	15
171	Elevated serum soluble CD40 ligand in cancer patients may play an immunosuppressive role. Blood, 2012, 120, 3030-3038.	0.6	107
172	Ipilimumab and a poxviral vaccine targeting prostate-specific antigen in metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncology, The, 2012, 13, 501-508.	5.1	333
173	Therapeutic Cancer Vaccines: Current Status and Moving Forward. Journal of the National Cancer Institute, 2012, 104, 599-613.	3.0	239
174	Recent Advances in Therapeutic Cancer Vaccines. Cancer Biotherapy and Radiopharmaceuticals, 2012, 27, 2-5.	0.7	11
175	Introduction: Therapeutic Cancer Vaccines. Seminars in Oncology, 2012, 39, 243-244.	0.8	Ο
176	Clinical Evaluation of TRICOM Vector Therapeutic Cancer Vaccines. Seminars in Oncology, 2012, 39, 296-304.	0.8	75
177	Interim analysis of a phase II randomized clinical trial of samrium-153 (Sm-153) with or without PSA-TRICOM vaccine in metastatic castration-resistant prostate cancer after docetaxel Journal of Clinical Oncology, 2012, 30, 2526-2526.	0.8	11
178	Tumor-infiltrating immune cells and prognosis: the potential link between conventional cancer therapy and immunity. Experimental Biology and Medicine, 2011, 236, 567-579.	1.1	298
179	Maturation of human dendritic cells with Saccharomyces cerevisiae (yeast) reduces the number and function of regulatory T cells and enhances the ratio of antigen-specific effectors to regulatory T cells. Vaccine, 2011, 29, 4992-4999.	1.7	22
180	Viral Vector-Based Therapeutic Cancer Vaccines. Cancer Journal (Sudbury, Mass), 2011, 17, 359-371.	1.0	151

#	Article	IF	CITATIONS
181	Analysis of circulating regulatory T cells in patients with metastatic prostate cancer pre- versus post-vaccination. Cancer Immunology, Immunotherapy, 2011, 60, 197-206.	2.0	51
182	A pilot safety trial investigating a vector-based vaccine targeting carcinoembryonic antigen in combination with radiotherapy in patients with gastrointestinal malignancies metastatic to the liver. Expert Opinion on Biological Therapy, 2011, 11, 1409-1418.	1.4	24
183	A Pilot Study of MUC-1/CEA/TRICOM Poxviral-Based Vaccine in Patients with Metastatic Breast and Ovarian Cancer. Clinical Cancer Research, 2011, 17, 7164-7173.	3.2	111
184	The Consequence of Immune Suppressive Cells in the Use of Therapeutic Cancer Vaccines and Their Importance in Immune Monitoring. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-8.	3.0	8
185	lgG Responses to Tissue-Associated Antigens as Biomarkers of Immunological Treatment Efficacy. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-10.	3.0	14
186	Strategies to target molecules that control the acquisition of a mesenchymal-like phenotype by carcinoma cells. Experimental Biology and Medicine, 2011, 236, 537-545.	1.1	31
187	Intratumoral Immunotherapy of Established Solid Tumors With Chitosan/IL-12. Journal of Immunotherapy, 2010, 33, 697-705.	1.2	79
188	New gene expressed in prostate: a potential target for T cell-mediated prostate cancer immunotherapy. Cancer Immunology, Immunotherapy, 2010, 59, 63-71.	2.0	28
189	Concurrent vaccination with two distinct vaccine platforms targeting the same antigen generates phenotypically and functionally distinct T-cell populations. Cancer Immunology, Immunotherapy, 2010, 59, 397-408.	2.0	39
190	Immunologic and prognostic factors associated with overall survival employing a poxviral-based PSA vaccine in metastatic castrate-resistant prostate cancer. Cancer Immunology, Immunotherapy, 2010, 59, 663-674.	2.0	279
191	Local delivery of recombinant vaccinia virus encoding for neu counteracts growth of mammary tumors more efficiently than systemic delivery in neu transgenic mice. Cancer Immunology, Immunotherapy, 2010, 59, 1247-1258.	2.0	24
192	Vaccines as Monotherapy and in Combination Therapy for Prostate Cancer. Clinical and Translational Science, 2010, 3, 116-122.	1.5	9
193	Effect of a small molecule BCLâ $\in 2$ inhibitor on immune function and use with a recombinant vaccine. International Journal of Cancer, 2010, 127, 1603-1613.	2.3	41
194	Overall Survival Analysis of a Phase II Randomized Controlled Trial of a Poxviral-Based PSA-Targeted Immunotherapy in Metastatic Castration-Resistant Prostate Cancer. Journal of Clinical Oncology, 2010, 28, 1099-1105.	0.8	900
195	A Viral Vaccine Encoding Prostate-Specific Antigen Induces Antigen Spreading to a Common Set of Self-Proteins in Prostate Cancer Patients. Clinical Cancer Research, 2010, 16, 4046-4056.	3.2	53
196	Vaccines against Human Carcinomas: Strategies to Improve Antitumor Immune Responses. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-12.	3.0	41
197	Strategies for Cancer Vaccine Development. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-13.	3.0	102
198	Therapeutic vaccines in metastatic castration-resistant prostate cancer: principles in clinical trial design. Expert Opinion on Biological Therapy, 2010, 10, 19-28.	1.4	32

#	Article	IF	CITATIONS
199	The MUC1-C oncoprotein as a target in hematologic malignancies. Cancer Biology and Therapy, 2010, 10, 492-494.	1.5	3
200	The T-box transcription factor Brachyury promotes epithelial-mesenchymal transition in human tumor cells. Journal of Clinical Investigation, 2010, 120, 533-544.	3.9	238
201	Cancer Immunology, Immunotherapeutics, and Vaccine Approaches. , 2010, , 305-319.		0
202	Intravesical Immunotherapy of Superficial Bladder Cancer with Chitosan/Interleukin-12. Cancer Research, 2009, 69, 6192-6199.	0.4	97
203	Antigen-presenting cells containing multiple costimulatory molecules promote activation and expansion of human antigen-specific memory CD8+ T cells. Cancer Immunology, Immunotherapy, 2009, 58, 503-515.	2.0	7
204	Chronic lymphocytic leukemia (CLL) cells genetically modified to express B7-1, ICAM-1, and LFA-3 confer APC capacity to T cells from CLL patients. Cancer Immunology, Immunotherapy, 2009, 58, 955-965.	2.0	17
205	TGF-β modulates the functionality of tumor-infiltrating CD8+ T cells through effects on TCR signaling and Spred1 expression. Cancer Immunology, Immunotherapy, 2009, 58, 1809-1818.	2.0	26
206	Human dendritic cell maturation and activation by a heat-killed recombinant yeast (Saccharomyces) Tj ETQq0 0	0 rgBT /0\	verlock 10 Tf 5
207	Harnessing the unique local immunostimulatory properties of modified vaccinia Ankara (MVA) virus to generate superior tumor-specific immune responses and antitumor activity in a diversified prime and boost vaccine regimen. Vaccine, 2009, 27, 4475-4482.	1.7	28
208	176 Vector-based Vaccines for Cancer Therapy. Journal of Acquired Immune Deficiency Syndromes (1999), 2009, 51, .	0.9	0
209	Use of radiolabeled monoclonal antibody to enhance vaccine-mediated antitumor effects. Cancer Immunology, Immunotherapy, 2008, 57, 1173-1183.	2.0	41
210	Recombinant Saccharomyces cerevisiae (yeast-CEA) as a potent activator of murine dendritic cells. Vaccine, 2008, 26, 509-521.	1.7	60
211	Combination of Docetaxel and Recombinant Vaccine Enhances T-Cell Responses and Antitumor Activity: Effects of Docetaxel on Immune Enhancement. Clinical Cancer Research, 2008, 14, 3536-3544.	3.2	207
212	Analysis of Overall Survival in Patients with Nonmetastatic Castration-Resistant Prostate Cancer Treated with Vaccine, Nilutamide, and Combination Therapy. Clinical Cancer Research, 2008, 14, 4526-4531.	3.2	141
213	Tumor-Induced Impairment of TCR Signaling Results in Compromised Functionality of Tumor-Infiltrating Regulatory T Cells. Journal of Immunology, 2008, 180, 5871-5881.	0.4	28
214	Paradigm Shifts in Cancer Vaccine Therapy. Experimental Biology and Medicine, 2008, 233, 522-534.	1.1	43
215	The Use of Chelated Radionuclide (Samarium-153-Ethylenediaminetetramethylenephosphonate) to Modulate Phenotype of Tumor Cells and Enhance T Cell–Mediated Killing. Clinical Cancer Research, 2008, 14, 4241-4249.	3.2	64
216	Vaccination with a Recombinant <i>Saccharomyces cerevisiae</i> Expressing a Tumor Antigen Breaks Immune Tolerance and Elicits Therapeutic Antitumor Responses. Clinical Cancer Research, 2008, 14,	3.2	76

4316-4325.

#	Article	IF	CITATIONS
217	Translational Research Working Group Developmental Pathway for Immune Response Modifiers. Clinical Cancer Research, 2008, 14, 5692-5699.	3.2	35
218	Safety and Immunologic Response of a Viral Vaccine to Prostate-Specific Antigen in Combination with Radiation Therapy when Metronomic-Dose Interleukin 2 Is Used as an Adjuvant. Clinical Cancer Research, 2008, 14, 5284-5291.	3.2	107
219	Pilot Study of Vaccination with Recombinant CEA-MUC-1-TRICOM Poxviral-Based Vaccines in Patients with Metastatic Carcinoma. Clinical Cancer Research, 2008, 14, 3060-3069.	3.2	208
220	Enhanced Functionality of CD4+CD25highFoxP3+ Regulatory T Cells in the Peripheral Blood of Patients with Prostate Cancer. Clinical Cancer Research, 2008, 14, 1032-1040.	3.2	131
221	Cancer Vaccines: Moving Beyond Current Paradigms. Clinical Cancer Research, 2007, 13, 3776-3782.	3.2	367
222	The Human T-Box Mesodermal Transcription Factor Brachyury Is a Candidate Target for T-Cell–Mediated Cancer Immunotherapy. Clinical Cancer Research, 2007, 13, 2471-2478.	3.2	150
223	Acquisition of antigen presentasome (APS), an MHC/costimulatory complex, is a checkpoint of memory T-cell homeostasis. Blood, 2007, 109, 2488-2495.	0.6	16
224	Chitosan solution enhances the immunoadjuvant properties of GM-CSF. Vaccine, 2007, 25, 8673-8686.	1.7	53
225	IL-2 immunotoxin denileukin diftitox reduces regulatory T cells and enhances vaccine-mediated T-cell immunity. Blood, 2007, 110, 3192-3201.	0.6	177
226	Clinical Safety of a Viral Vector Based Prostate Cancer Vaccine Strategy. Journal of Urology, 2007, 178, 1515-1520.	0.2	119
227	Identification of cytotoxic T-lymphocyte epitope(s) and its agonist epitope(s) of a novel target for vaccine therapy (PAGE4). International Journal of Cancer, 2007, 121, 595-605.	2.3	19
228	Phase I Trial of an Enhanced Prostate-Specific Antigen–Based Vaccine and Anti–CTLA-4 Antibody in Patients with Metastatic Androgen-Independent Prostate Cancer. Clinical Genitourinary Cancer, 2007, 5, 347-350.	0.9	10
229	The combined activation of positive costimulatory signals with modulation of a negative costimulatory signal for the enhancement of vaccine-mediated T-cell responses. Cancer Immunology, Immunotherapy, 2007, 56, 1471-1484.	2.0	35
230	Intratumoral delivery of vector mediated IL-2 in combination with vaccine results in enhanced T cell avidity and anti-tumor activity. Cancer Immunology, Immunotherapy, 2007, 56, 1897-1910.	2.0	17
231	PART V. Modulation of Antitumor Vaccine StrategiesPreclinical and Clinical Studies of Recombinant Poxvirus Vaccines for Carcinoma Therapy. Critical Reviews in Immunology, 2007, 27, 451-462.	1.0	49
232	Recombinant Viral and Bacterial Vaccines. , 2007, , 217-250.		0
233	4-1BB ligand enhances tumor-specific immunity of poxvirus vaccines. Vaccine, 2006, 24, 4975-4986.	1.7	35
234	TRICOM Vector Based Cancer Vaccines. Current Pharmaceutical Design, 2006, 12, 351-361.	0.9	53

#	Article	IF	CITATIONS
235	Combination Chemotherapy and Radiation of Human Squamous Cell Carcinoma of the Head and Neck Augments CTL-Mediated Lysis. Clinical Cancer Research, 2006, 12, 1897-1905.	3.2	85
236	Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. Journal of Experimental Medicine, 2006, 203, 1259-1271.	4.2	1,389
237	A randomized phase II study of concurrent docetaxel plus vaccine versus vaccine alone in metastatic androgen-independent prostate cancer Clinical Cancer Research, 2006, 12, 1260-1269.	3.2	286
238	Physiological relevance of antigen presentasome (APS), an acquired MHC/costimulatory complex, in the sustained activation of CD4+ T cells in the absence of APCs. Blood, 2005, 105, 3238-3246.	0.6	41
239	Potential approach to immunotherapy of chronic lymphocytic leukemia (CLL): enhanced immunogenicity of CLL cells via infection with vectors encoding for multiple costimulatory molecules. Blood, 2005, 106, 3515-3523.	0.6	32
240	The Requirement of Multimodal Therapy (Vaccine, Local Tumor Radiation, and Reduction of Suppressor) Tj ETQq() 0,0 rgBT 3.2	/Qyerlock 10
241	Combining a Recombinant Cancer Vaccine with Standard Definitive Radiotherapy in Patients with Localized Prostate Cancer. Clinical Cancer Research, 2005, 11, 3353-3362.	3.2	357
242	Analyses of Recombinant Vaccinia and Fowlpox Vaccine Vectors Expressing Transgenes for Two Human Tumor Antigens and Three Human Costimulatory Molecules. Clinical Cancer Research, 2005, 11, 1597-1607.	3.2	44
243	Identification of Novel Human CTL Epitopes and Their Agonist Epitopes of Mesothelin. Clinical Cancer Research, 2005, 11, 6342-6351.	3.2	56
244	Induction of Higher-Avidity Human CTLs by Vector-Mediated Enhanced Costimulation of Antigen-Presenting Cells. Clinical Cancer Research, 2005, 11, 5603-5615.	3.2	37
245	Induction of an Antigen Cascade by Diversified Subcutaneous/Intratumoral Vaccination Is Associated with Antitumor Responses. Clinical Cancer Research, 2005, 11, 2416-2426.	3.2	79
246	Multiple Costimulatory Modalities Enhance CTL Avidity. Journal of Immunology, 2005, 174, 5994-6004.	0.4	128
247	Vaccines with Enhanced Costimulation Maintain High Avidity Memory CTL. Journal of Immunology, 2005, 175, 3715-3723.	0.4	45
248	Phase I Study of Sequential Vaccinations With Fowlpox-CEA(6D)-TRICOM Alone and Sequentially With Vaccinia-CEA(6D)-TRICOM, With and Without Granulocyte-Macrophage Colony-Stimulating Factor, in Patients With Carcinoembryonic Antigen–Expressing Carcinomas. Journal of Clinical Oncology, 2005, 23, 720-731.	0.8	290
249	Minimizing the Immunogenicity of Antibodies for Clinical Application. Tumor Biology, 2005, 26, 31-43.	0.8	40
250	ANTIANDROGEN, VACCINE AND COMBINATION THERAPY IN PATIENTS WITH NONMETASTATIC HORMONE REFRACTORY PROSTATE CANCER. Journal of Urology, 2005, 174, 539-546.	0.2	106
251	SDR grafting—a new approach to antibody humanization. Methods, 2005, 36, 25-34.	1.9	75
252	Inhibition of CD4+25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood, 2005, 105, 2862-2868.	0.6	810

#	Article	IF	CITATIONS
253	Phase II Randomized Study of Vaccine Treatment of Advanced Prostate Cancer (E7897): A Trial of the Eastern Cooperative Oncology Group. Journal of Clinical Oncology, 2004, 22, 2122-2132.	0.8	226
254	Sublethal Irradiation of Human Tumor Cells Modulates Phenotype Resulting in Enhanced Killing by Cytotoxic T Lymphocytes. Cancer Research, 2004, 64, 7985-7994.	0.4	489
255	Intratumoral Vaccination and Diversified Subcutaneous/ Intratumoral Vaccination with Recombinant Poxviruses Encoding a Tumor Antigen and Multiple Costimulatory Molecules. Clinical Cancer Research, 2004, 10, 1090-1099.	3.2	39
256	A Human Cytotoxic T-Lymphocyte Epitope and Its Agonist Epitope from the Nonvariable Number of Tandem Repeat Sequence of MUC-1. Clinical Cancer Research, 2004, 10, 2139-2149.	3.2	60
257	External Beam Radiation of Tumors Alters Phenotype of Tumor Cells to Render Them Susceptible to Vaccine-Mediated T-Cell Killing. Cancer Research, 2004, 64, 4328-4337.	0.4	410
258	Amplification of the lytic potential of effector/memory CD8+ cells by vector-based enhancement of ICAM-1 (CD54) in target cells: implications for intratumoral vaccine therapy. Cancer Gene Therapy, 2004, 11, 665-680.	2.2	35
259	Combination of a Poxvirus-Based Vaccine with a Cyclooxygenase-2 Inhibitor (Celecoxib) Elicits Antitumor Immunity and Long-Term Survival in CEA.Tg/MIN Mice. Cancer Research, 2004, 64, 3668-3678.	0.4	80
260	SDR grafting of a murine antibody using multiple human germline templates to minimize its immunogenicity. Molecular Immunology, 2004, 41, 863-872.	1.0	64
261	Pox Viral Vaccines. , 2004, , 175-191.		0
262	Modification of B-CLL Cells Via Infection with a Replication-Defective MVA Virus Encoding Three Costimulatory Molecules: A Potential Approach to Tumor Cell Immunotherapy of B-CLL Blood, 2004, 104, 2516-2516.	0.6	0
263	General Keynote: Vaccine Strategies for the Therapy of Ovarian Cancer. Gynecologic Oncology, 2003, 88, S97-S104.	0.6	13
264	A novel ELISPOT assay to enhance detection of antigen-specific T cells employing antigen-presenting cells expressing vector-driven human B7-1. Journal of Immunological Methods, 2003, 279, 183-192.	0.6	5
265	Enhanced expression of lymphotactin by CD8+ T cells is selectively induced by enhancer agonist peptides of tumor-associated antigens. Cytokine, 2003, 24, 128-142.	1.4	14
266	Minimizing immunogenicity of the SDR-grafted humanized antibody CC49 by genetic manipulation of the framework residues. Molecular Immunology, 2003, 40, 337-349.	1.0	28
267	Selective Induction of High Avidity CTL by Altering the Balance of Signals from APC. Journal of Immunology, 2003, 170, 2523-2530.	0.4	120
268	Strategies for the development of PSA-based vaccines for the treatment of advanced prostate cancer. Expert Review of Vaccines, 2003, 2, 483-493.	2.0	12
269	Differential gene expression profiles in a human T-cell line stimulated with a tumor-associated self-peptide versus an enhancer agonist peptide. Clinical Cancer Research, 2003, 9, 1616-27.	3.2	9
270	Vaccine therapy of established tumors in the absence of autoimmunity. Clinical Cancer Research, 2003, 9, 1837-49.	3.2	83

#	Article	IF	CITATIONS
271	Modified vaccinia virus ankara recombinants are as potent as vaccinia recombinants in diversified prime and boost vaccine regimens to elicit therapeutic antitumor responses. Cancer Research, 2003, 63, 7942-9.	0.4	55
272	In vitro affinity maturation of a specificity-determining region-grafted humanized anticarcinoma antibody: isolation and characterization of minimally immunogenic high-affinity variants. Clinical Cancer Research, 2003, 9, 5521-31.	3.2	20
273	Grafting of "Abbreviated―Complementarity-Determining Regions Containing Specificity-Determining Residues Essential for Ligand Contact to Engineer a Less Immunogenic Humanized Monoclonal Antibody. Journal of Immunology, 2002, 169, 3076-3084.	0.4	43
274	Acquisition of CD80 by Human T Cells at Early Stages of Activation: Functional Involvement of CD80 Acquisition in T Cell to T Cell Interaction. Journal of Immunology, 2002, 169, 6162-6169.	0.4	83
275	Surface plasmon resonance-based competition assay to assess the sera reactivity of variants of humanized antibodies. Journal of Immunological Methods, 2002, 268, 197-210.	0.6	48
276	Vector-based delivery of tumor-associated antigens and T-cell co-stimulatory molecules in the induction of immune responses and anti-tumor immunity. Cancer Detection and Prevention, 2002, 26, 275-291.	2.1	19
277	Phase I study of a vaccine using recombinant vaccinia virus expressing PSA (rV-PSA) in patients with metastatic androgen-independent prostate cancer. Prostate, 2002, 53, 109-117.	1.2	220
278	Identification and characterization of a human agonist cytotoxic T-lymphocyte epitope of human prostate-specific antigen. Clinical Cancer Research, 2002, 8, 41-53.	3.2	66
279	Identification of an interferon-gamma-inducible carcinoembryonic antigen (CEA) CD8(+) T-cell epitope, which mediates tumor killing in CEA transgenic mice. Cancer Research, 2002, 62, 5058-64.	0.4	35
280	Vector-based vaccine/cytokine combination therapy to enhance induction of immune responses to a self-antigen and antitumor activity. Cancer Research, 2002, 62, 5770-7.	0.4	79
281	Vaccine-based therapy directed against carcinoembryonic antigen demonstrates antitumor activity on spontaneous intestinal tumors in the absence of autoimmunity. Cancer Research, 2002, 62, 6944-51.	0.4	85
282	Enhancing the potency of peptide-pulsed antigen presenting cells by vector-driven hyperexpression of a triad of costimulatory molecules. Vaccine, 2001, 19, 3552-3567.	1.7	36
283	Clinical Trial Designs for the Early Clinical Development of Therapeutic Cancer Vaccines. Journal of Clinical Oncology, 2001, 19, 1848-1854.	0.8	113
284	Vector-driven hyperexpression of a triad of costimulatory molecules confers enhanced T-cell stimulatory capacity to DC precursors. Critical Reviews in Oncology/Hematology, 2001, 39, 43-57.	2.0	13
285	Acquisition of CD80 (B7-1) by T Cells. Journal of Immunology, 2001, 166, 2505-2513.	0.4	95
286	Vaccination with a recombinant vaccinia vaccine containing the B7-1 co-stimulatory molecule causes no significant toxicity and enhances T cell-mediated cytotoxicity. International Journal of Cancer, 2000, 85, 508-517.	2.3	8
287	Agonist peptide from a cytotoxic t-lymphocyte epitope of human carcinoembryonic antigen stimulates production of tc1-type cytokines and increases tyrosine phosphorylation more efficiently than cognate peptide. , 2000, 85, 829-838.		66
288	Rational antigen modification as a strategy to upregulate or downregulate antigen recognition. Current Opinion in Immunology, 2000, 12, 85-91.	2.4	22

#	Article	IF	CITATIONS
289	The use of a rapid ELISPOT assay to analyze peptide-specific immune responses in carcinoma patients to peptide vs. recombinant poxvirus vaccines. Cancer Immunology, Immunotherapy, 2000, 49, 517-529.	2.0	73
290	Phase I clinical trial of a recombinant canarypoxvirus (ALVAC) vaccine expressing human carcinoembryonic antigen and the B7.1 co-stimulatory molecule. Cancer Immunology, Immunotherapy, 2000, 49, 504-514.	2.0	195
291	Phase I Study in Advanced Cancer Patients of a Diversified Prime-and-Boost Vaccination Protocol Using Recombinant Vaccinia Virus and Recombinant Nonreplicating Avipox Virus to Elicit Anti–Carcinoembryonic Antigen Immune Responses. Journal of Clinical Oncology, 2000, 18, 3964-3973.	0.8	337
292	Structural Correlates of an Anticarcinoma Antibody: Identification of Specificity-Determining Residues (SDRs) and Development of a Minimally Immunogenic Antibody Variant by Retention of SDRs Only. Journal of Immunology, 2000, 164, 1432-1441.	0.4	71
293	Anti-Tumor Immunity Elicited by a Recombinant Vaccinia Virus Expressing CD70 (CD27L). Human Gene Therapy, 1999, 10, 1095-1103.	1.4	62
294	Induction of Anti-Tumor Immunity Elicited by Tumor Cells Expressing a Murine LFA-3 Analog via a Recombinant Vaccinia Virus. Human Gene Therapy, 1999, 10, 623-631.	1.4	26
295	The diversity of T-cell co-stimulation in the induction of antitumor immunity. Immunological Reviews, 1999, 170, 73-84.	2.8	27
296	Persistence, Immune Specificity, and Functional Ability of Murine Mutant Ras Epitope-Specific CD4+ and CD8+ T Lymphocytes Following in Vivo Adoptive Transfer. Cellular Immunology, 1999, 194, 78-89.	1.4	16
297	CDR substitutions of a humanized monoclonal antibody (CC49): contributions of individual CDRs to antigen binding and immunogenicity. Molecular Immunology, 1999, 36, 1079-1091.	1.0	27
298	A Phase I Vaccine Trial with Peptides Reflecting ras Oncogene Mutations of Solid Tumors. Journal of Immunotherapy, 1999, 22, 155-165.	1.2	120
299	Identification of a Human CD8+T Lymphocyte Neo-epitope Created by arasCodon 12 Mutation Which Is Restricted by the HLA-A2 Allele. Cellular Immunology, 1998, 187, 103-116.	1.4	31
300	In vivo evaluation of a lead-labeled monoclonal antibody using the DOTA ligand. European Journal of Nuclear Medicine and Molecular Imaging, 1998, 25, 471-480.	3.3	19
301	Cancer vaccine development. Expert Opinion on Investigational Drugs, 1998, 7, 1439-1452.	1.9	2
302	Construction and Characterization of a Recombinant Vaccinia Virus Expressing Murine Intercellular Adhesion Molecule-1: Induction and Potentiation of Antitumor Responses. Human Gene Therapy, 1997, 8, 851-860.	1.4	46
303	Immunization with a Syngeneic Tumor Infected with Recombinant Vaccinia Virus Expressing Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) Induces Tumor Regression and Long-Lasting Systemic Immunity. Journal of Immunotherapy, 1997, 20, 449-459.	1.2	27
304	Intraperitoneal Radioimmunotherapy of Ovarian Cancer with177Lu-CC49: A Phase I/II Study. Gynecologic Oncology, 1997, 65, 94-101.	0.6	161
305	In Vitro Generation of Human Cytotoxic T Lymphocytes Specific for Peptides Derived From Prostate-Specific Antigen. Journal of the National Cancer Institute, 1997, 89, 293-300.	3.0	228
306	Diversified prime and boost protocols using recombinant vaccinia virus and recombinant non-replicating avian pox virus to enhance T-cell immunity and antitumor responses. Vaccine, 1997, 15, 759-768.	1.7	170

#	Article	IF	CITATIONS
307	Generation of Stable CD4+and CD8+T Cell Lines from Patients Immunized withrasOncogene-Derived Peptides Reflecting Codon 12 Mutations. Cellular Immunology, 1997, 182, 137-151.	1.4	88
308	Quantitative analysis of CEA expression in colorectal adenocarcinoma and serum: Lack of correlation. , 1997, 72, 949-954.		52
309	Strategies for the development of recombinant vaccines for the immunotherapy of breast cancer. Breast Cancer Research and Treatment, 1996, 38, 27-39.	1.1	37
310	Identification of overlapping epitopes in mutantras oncogene peptides that activate CD4+ and CD8+ T cell responses. European Journal of Immunology, 1996, 26, 435-443.	1.6	56
311	Phase I Study of Recombinant CEA Vaccinia Virus Vaccine with Post Vaccination CEA Peptide Challenge. Medical University of South Carolina, Charleston, South Carolina. Human Gene Therapy, 1996, 7, 1381-1394.	1.4	50
312	Peptide-specific activation of cytolytic CD4+ T lymphocytes against tumor cells bearing mutated epitopes of K-ras p21. European Journal of Immunology, 1995, 25, 2588-2597.	1.6	41
313	A recombinant vaccinia virus expressing human prostate-specific antigen (PSA): Safety and immunogenicity in a non-human primate. International Journal of Cancer, 1995, 63, 231-237.	2.3	99
314	Generation, purification, and characterization of a recombinant source of human prostate-specific antigen. Journal of Clinical Laboratory Analysis, 1995, 9, 261-268.	0.9	12
315	Generation, Characterization, and in Vivo Studies of Humanized Anticarcinoma Antibody CC49. Hybridoma, 1995, 14, 461-473.	0.9	68
316	CA 72-4 Serum Marker–A New Tool in the Management of Carcinoma Patients. Cancer Investigation, 1995, 13, 227-238.	0.6	45
317	Potential for recombinant immunoglobulin constructs in the management of carcinoma. Cancer, 1994, 73, 1105-1113.	2.0	17
318	Biodistribution and preclinical radioimmunotherapy studies using radiolanthanide-labeled immunoconjugates. Cancer, 1994, 73, 993-998.	2.0	35
319	Monoclonal Antibody Gene Transfer: Implications for Tumor-Specific Cell-Mediated Cytotoxicity. Annals of the New York Academy of Sciences, 1994, 716, 154-166.	1.8	4
320	Enhanced Immune Responses and Anti-Tumor Activity by Baculovirus Recombinant Carcinoembryonic Antigen (CEA) in Mice Primed with the Recombinant Vaccinia CEA. Journal of Immunotherapy, 1994, 16, 275.	1.2	26
321	TAG-72 (CA 72-4 assay) as a complementary serum tumor antigen to carcinoembryonic antigen in monitoring patients with colorectal cancer. Cancer, 1993, 72, 2098-2106.	2.0	51
322	Biologic properties of a Ch2 domain-deleted recombinant immunoglobulin. International Journal of Cancer, 1993, 53, 97-103.	2.3	45
323	Crystallographic studies and primary structure of the antitumor monoclonal CC49 Fab′. Proteins: Structure, Function and Bioinformatics, 1993, 17, 438-443.	1.5	4
324	Definition of the expression of the human carcinoembryonic antigen and nonâ€specific crossâ€reacting antigen in human breast and lung carcinomas. International Journal of Cancer, 1993, 53, 892-897.	2.3	36

#	Article	IF	CITATIONS
325	Carcinoembryonic antigen regulation in human colorectal tumor cells by a site-selective cyclic amp analogue: A comparison with interferon-gamma. International Journal of Cancer, 1991, 48, 413-422.	2.3	13
326	A recombinant vaccinia virus expressing human carcinoembryonic antigen (CEA). International Journal of Cancer, 1991, 48, 900-907.	2.3	73
327	Tumor-associated glycoprotein-72 serum levels complement carcinoembryonic antigen levels in monitoring patients with gastrointestinal carcinoma. A lingitudinal study. Cancer, 1991, 68, 2443-2450.	2.0	36
328	Applications of monoclonal antibodies and recombinant cytokines for the treatment of human colorectal and other carcinomas. Journal of Surgical Oncology, 1991, 48, 9-13.	0.8	8
329	Clinical evaluation of serum tumor-associated glycoprotein-72 as a novel tumor marker for colorectal cancer patients. Journal of Surgical Oncology, 1991, 48, 16-20.	0.8	8
330	Monoclonal antibodies in the management of carcinoma patients. Medical Oncology and Tumor Pharmacotherapy, 1991, 8, 223-228.	1.0	2
331	Lymphokine-activated killer cell cytotoxicity against human colon carcinomas enhanced by monoclonal antibody D612. International Journal of Cancer, 1990, 46, 1021-1028.	2.3	10
332	Assay for the detection of anti-idiotypic antibodies to monoclonal antibody b72.3. Journal of Clinical Laboratory Analysis, 1990, 4, 465-473.	0.9	6
333	mRNA Expression of Transforming Growth Factor Alpha in Human Breast Carcinomas and Its Activity in Effusions of Breast Cancer Patients. Journal of the National Cancer Institute, 1989, 81, 1165-1171.	3.0	42
334	Serologic mapping and biochemical characterization of the carcinoembryonic antigen epitopes using fourteen distinct monoclonal antibodies. International Journal of Cancer, 1989, 44, 208-218.	2.3	45
335	Ca 72-4 radioimmunoassay for the detection of the tag-72 carcinoma-associated antigen in serum of patients. Journal of Clinical Laboratory Analysis, 1989, 3, 360-369.	0.9	64
336	Intraoperative radioimmunolocalization of colorectal carcinoma with a hand-held gamma probe and MAb B72.3: Comparison ofin vivo gamma probe counts within vitro MAb radiolocalization. International Journal of Cancer, 1988, 42, 352-358.	2.3	39
337	Comparative studies on the expression of tumor-associated glycoprotein (TAG-72), CA 19-9 and DU-pan-2 in normal, benign and malignant pancreatic tissue. International Journal of Cancer, 1988, 42, 681-686.	2.3	28
338	Applications of Immunocytochemistry to Clinical Cytology. Cancer Investigation, 1987, 5, 593-611.	0.6	20
339	Immunohistochemical evaluation of ras oncogene expression in pulmonary and pleural neoplasms. Vigiliae Christianae, 1987, 53, 146-152.	0.1	27
340	ras oncogene p21 as a tumor marker in the cytodiagnosis of gastric and colonic carcinomas. Cancer, 1987, 60, 2432-2436.	2.0	28
341	Complementation of anti-CEA and anti-TAG-72 monoclonal antibodies in reactivity to human gastric adenocarcinomas. International Journal of Cancer, 1987, 40, 726-733.	2.3	50
342	A radioimmunoassay for the detection of a human tumor-associated glycoprotein (tag-72) using monoclonal antibody B72.3. International Journal of Cancer, 1986, 37, 659-666.	2.3	56

#	Article	IF	CITATIONS
343	Development of quantitative liquid competition radioimmunoassays for theras oncogene and proto-oncogene p21 products. International Journal of Cancer, 1986, 38, 587-595.	2.3	8
344	Tumor-associated glycoprotein (TAG-72) detected in adenocarcinomas and benign lesions of the stomach. International Journal of Cancer, 1986, 38, 643-650.	2.3	49
345	Monoclonal antibody immunoradiometric assay for an antigenic determinant (CA 72) on a novel pancarcinoma antigen (TAG-72). International Journal of Cancer, 1986, 38, 661-669.	2.3	76
346	Tumor-associated antigen TAG-72: Correlation of expression in primary and metastatic breast carcinoma lesions. Breast Cancer Research and Treatment, 1985, 6, 49-56.	1.1	25
347	Monoclonal antibody DF3 correlates with tumor differentiation and hormone receptor status in breast cancer patients. Breast Cancer Research and Treatment, 1985, 5, 269-276.	1.1	59
348	Monoclonal antibodies to breast cancer-associated antigens as potential reagents in the management of breast cancer. Cancer, 1984, 54, 2777-2794.	2.0	47
349	Differential Reactivity of a Novel Monoclonal Antibody (DF3) with Human Malignant versus Benign Breast Tumors. Hybridoma, 1984, 3, 223-232.	0.9	502
350	Differential reactivity of monoclonal antibodies with human colon adenocarcinomas and adenomas. International Journal of Cancer, 1983, 31, 543-552.	2.3	177