Ah-Young Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1404145/publications.pdf

Version: 2024-02-01

11 papers	430 citations	1478505 6 h-index	10 g-index
11	11	11	700 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Synthesis of Mg Alkoxide Nanowires from Mg Alkoxide Nanoparticles upon Ligand Exchange. ACS Applied Materials & Samp; Interfaces, 2022, 14, 13820-13827.	8.0	0
2	Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries. Nature Materials, 2021, 20, 984-990.	27.5	105
3	Conversion of Mgâ€Li Bimetallic Alloys to Magnesium Alkoxide and Magnesium Oxide Ceramic Nanowires. Angewandte Chemie - International Edition, 2020, 59, 403-408.	13.8	9
4	Conversion of Mgâ€Li Bimetallic Alloys to Magnesium Alkoxide and Magnesium Oxide Ceramic Nanowires. Angewandte Chemie, 2020, 132, 411-416.	2.0	1
5	Understanding Liâ€lon Dynamics in Lithium Hydroxychloride (Li 2 OHCl) Solid State Electrolyte via Addressing the Role of Protons. Advanced Energy Materials, 2020, 10, 1903480.	19.5	29
6	Cycle stability of conversion-type iron fluoride lithium battery cathode at elevated temperatures in polymer electrolyte composites. Nature Materials, 2019, 18, 1343-1349.	27.5	127
7	Flexible Nanofiberâ€Reinforced Solid Polymer Lithiumâ€lon Battery. Energy Technology, 2019, 7, 1900064.	3.8	6
8	Ion Conductivities: Protons Enhance Conductivities in Lithium Halide Hydroxide/Lithium Oxyhalide Solid Electrolytes by Forming Rotating Hydroxy Groups (Adv. Energy Mater. 3/2018). Advanced Energy Materials, 2018, 8, 1870014.	19.5	2
9	Protons Enhance Conductivities in Lithium Halide Hydroxide/Lithium Oxyhalide Solid Electrolytes by Forming Rotating Hydroxy Groups. Advanced Energy Materials, 2018, 8, 1700971.	19.5	65
10	Mechanisms of Transformation of Bulk Aluminum–Lithium Alloys to Aluminum Metal–Organic Nanowires. Journal of the American Chemical Society, 2018, 140, 12493-12500.	13.7	15
11	Hollow titanium dioxide spheres as anode material for lithium ion battery with largely improved rate stability and cycle performance by suppressing the formation of solid electrolyte interface layer. Journal of Materials Chemistry A, 2015, 3, 13340-13349.	10.3	71