
Laura Sanchez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1402397/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Manganese(I) tricarbonyl complexes as potential anticancer agents. Journal of Biological Inorganic Chemistry, 2022, 27, 49-64.	2.6	4
2	What Zebrafish and Nanotechnology Can Offer for Cancer Treatments in the Age of Personalized Medicine. Cancers, 2022, 14, 2238.	3.7	6
3	Embryonic nutritional hyperglycemia decreases cell proliferation in the zebrafish retina. Histochemistry and Cell Biology, 2022, 158, 401-409.	1.7	1
4	Morphological Abnormalities and Gene Expression Changes Caused by High Incubation Temperatures in Zebrafish Xenografts with Human Cancer Cells. Genes, 2021, 12, 113.	2.4	4
5	Loss of Active Neurogenesis in the Adult Shark Retina. Frontiers in Cell and Developmental Biology, 2021, 9, 628721.	3.7	11
6	Inhibition of Mitochondrial Dynamics Preferentially Targets Pancreatic Cancer Cells with Enhanced Tumorigenic and Invasive Potential. Cancers, 2021, 13, 698.	3.7	31
7	Zebrafish Models of Autosomal Dominant Ataxias. Cells, 2021, 10, 421.	4.1	10
8	Cellular and Molecular Mechanisms Underlying Glioblastoma and Zebrafish Models for the Discovery of New Treatments. Cancers, 2021, 13, 1087.	3.7	16
9	A comprehensive structural, lectin and immunohistochemical characterization of the zebrafish olfactory system. Scientific Reports, 2021, 11, 8865.	3.3	8
10	Zebrafish Models of Autosomal Recessive Ataxias. Cells, 2021, 10, 836.	4.1	6
11	Edelfosine nanoemulsions inhibit tumor growth of triple negative breast cancer in zebrafish xenograft model. Scientific Reports, 2021, 11, 9873.	3.3	16
12	Triazole-Based Half-Sandwich Ruthenium(II) Compounds: From <i>In Vitro</i> Antiproliferative Potential to <i>In Vivo</i> Toxicity Evaluation. Inorganic Chemistry, 2021, 60, 8011-8026.	4.0	7
13	Conservation of Zebrafish MicroRNA-145 and Its Role during Neural Crest Cell Development. Genes, 2021, 12, 1023.	2.4	5
14	Zebrafish Models for the Safety and Therapeutic Testing of Nanoparticles with a Focus on Macrophages. Nanomaterials, 2021, 11, 1784.	4.1	15
15	Dissecting Breast Cancer Circulating Tumor Cells Competence via Modelling Metastasis in Zebrafish. International Journal of Molecular Sciences, 2021, 22, 9279.	4.1	14
16	Evaluation of the In Vitro and In Vivo Efficacy of Ruthenium Polypyridyl Compounds against Breast Cancer. International Journal of Molecular Sciences, 2021, 22, 8916.	4.1	3
17	ZFTool: A Software for Automatic Quantification of Cancer Cell Mass Evolution in Zebrafish. Applied Sciences (Switzerland), 2021, 11, 7721.	2.5	3
18	N-Heterocyclic Carbene Iron Complexes as Anticancer Agents: In Vitro and In Vivo Biological Studies. Molecules, 2021, 26, 5535.	3.8	5

#	Article	IF	CITATIONS
19	The multifaceted roles of gasdermins in cancer biology and oncologic therapies. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188635.	7.4	29
20	Decline in Constitutive Proliferative Activity in the Zebrafish Retina with Ageing. International Journal of Molecular Sciences, 2021, 22, 11715.	4.1	5
21	Dysregulated splicing factor SF3B1 unveils a dual therapeutic vulnerability to target pancreatic cancer cells and cancer stem cells with an anti-splicing drug. Journal of Experimental and Clinical Cancer Research, 2021, 40, 382.	8.6	25
22	Cell senescence contributes to tissue regeneration in zebrafish. Aging Cell, 2020, 19, e13052.	6.7	77
23	Exploiting oxidative phosphorylation to promote the stem and immunoevasive properties of pancreatic cancer stem cells. Nature Communications, 2020, 11, 5265.	12.8	73
24	The hemoglobin Gly16β1Asp polymorphism in turbot (Scophthalmus maximus) is differentially distributed across European populations. Fish Physiology and Biochemistry, 2020, 46, 2367-2376.	2.3	3
25	Experimental Models to Study Autism Spectrum Disorders: hiPSCs, Rodents and Zebrafish. Genes, 2020, 11, 1376.	2.4	18
26	Modeling Cancer Using Zebrafish Xenografts: Drawbacks for Mimicking the Human Microenvironment. Cells, 2020, 9, 1978.	4.1	27
27	Circulating Tumor Cells Characterization Revealed TIMP1 as a Potential Therapeutic Target in Ovarian Cancer. Cells, 2020, 9, 1218.	4.1	25
28	Acetaminophen affects the survivor, pigmentation and development of craniofacial structures in zebrafish (Danio rerio) embryos. Biochemical Pharmacology, 2020, 174, 113816.	4.4	27
29	Inhibition of Gamma-Secretase Promotes Axon Regeneration After a Complete Spinal Cord Injury. Frontiers in Cell and Developmental Biology, 2020, 8, 173.	3.7	13
30	Developmentally-programmed cellular senescence is conserved and widespread in zebrafish. Aging, 2020, 12, 17895-17901.	3.1	12
31	Looking for a Better Characterization of Triple-Negative Breast Cancer by Means of Circulating Tumor Cells. Journal of Clinical Medicine, 2020, 9, 353.	2.4	17
32	CTCsâ€derived xenograft development in a triple negative breast cancer case. International Journal of Cancer, 2019, 144, 2254-2265.	5.1	31
33	The size and composition of polymeric nanocapsules dictate their interaction with macrophages and biodistribution in zebrafish. Journal of Controlled Release, 2019, 308, 98-108.	9.9	30
34	POU1F1 transcription factor promotes breast cancer metastasis via recruitment and polarization of macrophages. Journal of Pathology, 2019, 249, 381-394.	4.5	26
35	The development of cell senescence. Experimental Gerontology, 2019, 128, 110742.	2.8	31
36	Glycosylated Cellâ€Penetrating Peptides (GCPPs). ChemBioChem, 2019, 20, 1400-1409.	2.6	19

#	Article	IF	CITATIONS
37	Serotonin inhibits axonal regeneration of identifiable descending neurons after a complete spinal cord injury in lampreys. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	14
38	In vivo toxicity assays in zebrafish embryos: a pre-requisite for xenograft preclinical studies. Toxicology Mechanisms and Methods, 2019, 29, 478-487.	2.7	11
39	Danio Rerio as Model Organism for Adenoviral Vector Evaluation. Genes, 2019, 10, 1053.	2.4	7
40	Susceptibility of Zebrafish to Vesicular Stomatitis Virus Infection. Zebrafish, 2018, 15, 124-132.	1.1	16
41	Breast cancer metastasis to liver and lung is facilitated by Pit-1-CXCL12-CXCR4 axis. Oncogene, 2018, 37, 1430-1444.	5.9	58
42	Improving zebrafish embryo xenotransplantation conditions by increasing incubation temperature and establishing a proliferation index with ZFtool. BMC Cancer, 2018, 18, 3.	2.6	44
43	Gomesin inhibits melanoma growth by manipulating key signaling cascades that control cell death and proliferation. Scientific Reports, 2018, 8, 11519.	3.3	37
44	First description of a natural infection with spleen and kidney necrosis virus in zebrafish. Journal of Fish Diseases, 2018, 41, 1283-1294.	1.9	34
45	Assessment of the permeability and toxicity of polymeric nanocapsules using the zebrafish model. Nanomedicine, 2017, 12, 2069-2082.	3.3	28
46	Dinuclear Ru ^{II} (bipy) ₂ Derivatives: Structural, Biological, and in Vivo Zebrafish Toxicity Evaluation. Inorganic Chemistry, 2017, 56, 7127-7144.	4.0	40
47	The Potential of Zebrafish as a Model Organism for Improving the Translation of Genetic Anticancer Nanomedicines. Genes, 2017, 8, 349.	2.4	27
48	"A Zebra in the Waterâ€: Inspiring Science in Spain. Zebrafish, 2016, 13, 241-247.	1.1	10
49	Lightâ€Controlled Cellular Internalization and Cytotoxicity of Nucleic Acidâ€Binding Agents: Studies in Vitro and in Zebrafish Embryos. ChemBioChem, 2016, 17, 37-41.	2.6	9
50	Cell senescence is an antiviral defense mechanism. Scientific Reports, 2016, 6, 37007.	3.3	70
51	Heteroleptic mononuclear compounds of ruthenium(<scp>ii</scp>): synthesis, structural analyses, in vitro antitumor activity and in vivo toxicity on zebrafish embryos. Dalton Transactions, 2016, 45, 19127-19140.	3.3	45
52	Marine guanidine alkaloids crambescidins inhibit tumor growth and activate intrinsic apoptotic signaling inducing tumor regression in a colorectal carcinoma zebrafish xenograft model. Oncotarget, 2016, 7, 83071-83087.	1.8	34
53	Gene expression analysis at the onset of sex differentiation in turbot (Scophthalmus maximus). BMC Genomics, 2015, 16, 973.	2.8	54
54	Screening of repetitive motifs inside the genome of the flat oyster (Ostrea edulis): Transposable elements and short tandem repeats. Marine Genomics, 2015, 24, 335-341.	1.1	12

#	Article	IF	CITATIONS
55	Genetic architecture of sex determination in fish: applications to sex ratio control in aquaculture. Frontiers in Genetics, 2014, 5, 340.	2.3	139
56	A sex-associated sequence identified by RAPD screening in gynogenetic individuals of turbot (Scophthalmus maximus). Molecular Biology Reports, 2014, 41, 1501-1509.	2.3	40
57	Analysis of qPCR reference gene stability determination methods and a practical approach for efficiency calculation on a turbot (Scophthalmus maximus) gonad dataset. BMC Genomics, 2014, 15, 648.	2.8	105
58	Sex-associated DNA markers from turbot. Marine Biology Research, 2011, 7, 378-387.	0.7	13
59	Identification of the Major Sex-Determining Region of Turbot (<i>Scophthalmus maximus</i>). Genetics, 2009, 183, 1443-1452.	2.9	109
60	Novel microsatellites from the European plaice (Pleuronectes platessa)––identification by data mining and cross-species amplification in other flatfishes. Conservation Genetics, 2009, 10, 1565-1568.	1.5	1
61	A microsatellite marker tool for parentage assessment in gilthead seabream (Sparus aurata). Aquaculture, 2007, 272, S210-S216.	3.5	35
62	A Microsatellite Genetic Map of the Turbot (<i>Scophthalmus maximus</i>). Genetics, 2007, 177, 2457-2467.	2.9	93
63	Analysis of a secondary contact between divergent lineages of brown trout Salmo trutta L. from Duero basin using microsatellites and mtDNA RFLPs. Journal of Fish Biology, 2007, 71, 195-213.	1.6	19
64	Diversity in isochore structure among cold-blooded vertebrates based on GC content of coding and non-coding sequences. Genetica, 2007, 129, 281-289.	1.1	23
65	Polyploidy in Acipenseriformes: Cytogenetic and Molecular Approaches. , 2007, , 405-420.		1
66	A microsatellite marker tool for parentage analysis in Senegal sole (Solea senegalensis): Genotyping errors, null alleles and conformance to theoretical assumptions. Aquaculture, 2006, 261, 1194-1203.	3.5	45
67	A set of highly polymorphic microsatellites useful for kinship and population analysis in turbot (Scophthalmus maximus L.). Aquaculture Research, 2006, 37, 1578-1582.	1.8	22
68	New microsatellite markers in turbot (Scophthalmus maximus) derived from an enriched genomic library and sequence databases. Molecular Ecology Notes, 2005, 5, 62-64.	1.7	15
69	Characterization of microsatellite markers derived from sequence databases for the European flounder (Platichthys flesus). Molecular Ecology Notes, 2005, 5, 664-665.	1.7	3
70	Phylogenetic analysis of flatfish (Order Pleuronectiformes) based on mitochondrial 16s rDNA sequences. Scientia Marina, 2005, 69, 531-543.	0.6	62
71	Characterization of a New Hpal Centromeric Satellite DNA in Salmo salar. Genetica, 2004, 121, 81-87.	1.1	14
72	Potential sources of error in parentage assessment of turbot (Scophthalmus maximus) using microsatellite loci. Aquaculture, 2004, 242, 119-135.	3.5	63

#	Article	IF	CITATIONS
73	Localization of 5S rRNA loci in three coregonid species (Salmonidae). Genetica, 2003, 119, 183-186.	1.1	12
74	Chromosomal characteristics of rDNA in European grayling Thymallus thymallus (Salmonidae). Genetica, 2003, 119, 219-224.	1.1	16
75	Gynogenesis Assessment Using Microsatellite Genetic Markers in Turbot (Scophthalmus maximus). Marine Biotechnology, 2003, 5, 584-592.	2.4	31
76	Recombination Analysis of the Human Minisatellite MsH42 Suggests the Existence of Two Distinct Pathways for Initiation and Resolution of Recombination at MsH42 in Rat Testes Nuclear Extractsâ€. Biochemistry, 2002, 41, 2166-2176.	2.5	9
77	Allozyme and microsatellite diversity in natural and domestic populations of turbot (Scophthalmus) Tj ETQq1 1 Sciences, 2002, 59, 1460-1473.	0.784314 1.4	rgBT /Overlo 60
78	Sex-dependent synaptic behaviour in triploid turbot, Scophthalmus maximus (Pisces, Scophthalmidae). Heredity, 2002, 89, 460-464.	2.6	25
79	Synaptonemal complex analysis in spermatocytes and oocytes of turbot, <i>Scophthalmus maximus</i> (Pisces, Scophthalmidae). Genome, 2001, 44, 1143-1147.	2.0	23
80	>Localization of ribosomal genes in Pleuronectiformes using Ag-, CMA3-banding and in situ hybridization. Heredity, 2001, 86, 531-536.	2.6	36
81	Population analysis of an unusual NOR-site polymorphism in brown trout (Salmo trutta L.). Heredity, 2001, 86, 291-302.	2.6	50
82	Ribosomal genes in Coregonid fishes (Coregonus lavaretus, C. albula and C. peled) (Salmonidae): single and multiple nucleolus organizer regions. Heredity, 2001, 87, 672-679.	2.6	24
83	Allozymic evidence of parapatric differentiation of brown trout (Salmo trutta L.) within an Atlantic river basin of the Iberian Peninsula. Molecular Ecology, 2001, 10, 1455-1469.	3.9	29
84	Prothymosin α, a mammalian c-myc-regulated acidic nuclear protein, provokes the decondensation of human chromosomes in vitro. Cytogenetic and Genome Research, 2001, 93, 171-174.	1.1	6
85	Synaptonemal complex analysis in spermatocytes and oocytes of turbot, <i>Scophthalmus maximus</i> (Pisces, Scophthalmidae). Genome, 2001, 44, 1143-1147.	2.0	3
86	A population analysis of the structure and variability of NOR in Salmo trutta by Ag, CMA3 and ISH. Genetica, 2000, 108, 113-118.	1.1	24
87	Brown trout 5S rDNA maps to chromosome 38. Chromosome Research, 2000, 8, 657-657.	2.2	4
88	rRNA genes map to chromosomes 10, 11 and 12 in European whitefish (Coregonus lavaretus) and to chromosomes 1, 5, 9 and 10 in vendace (Coregonus albula). Chromosome Research, 2000, 8, 455-455.	2.2	8
89	Induction of triploidy in the turbot (Scophthalmus maximus). Aquaculture, 2000, 188, 79-90.	3.5	68
90	Genetic structure of brown trout, Salmo trutta L., at the southern limit of the distribution range of the anadromous form. Molecular Ecology, 1999, 8, 1991-2001.	3.9	70

#	Article	IF	CITATIONS
91	rDNA RFLPs as genetic markers for resource management in brown trout. Journal of Fish Biology, 1999, 55, 221-225.	1.6	5
92	Analysis of European eel (Anguilla anguilla) chromosomes after treatment with Tfil and Aval restriction endonucleases. Journal of Applied Ichthyology, 1998, 14, 113-115.	0.7	2
93	Brief communication. Analysis of the inheritance of NOR size variants in brown trout (Salmo trutta). Journal of Heredity, 1998, 89, 264-266.	2.4	12
94	Molecular analysis of a NOR site polymorphism in brown trout (<i>Salmo trutta</i>): organization of rDNA intergenic spacers. Genome, 1997, 40, 916-922.	2.0	17
95	Gene diversity analysis in natural populations and cultured stocks of turbot (Scophthalmus maximus) Tj ETQq1 1	0,784314 1.7	∔rgβT /Overl
96	Chromosomal analysis of two established salmonid cell lines: CHSE-214 (Oncorhynchus) Tj ETQq0 0 0 rgBT /Over Animal, 1997, 33, 662-664.	lock 10 Tf 1.5	50 547 Td (t 2
97	A newEcoRI family of satellite DNA in lampreys. FEBS Letters, 1996, 394, 187-190.	2.8	7
98	Localization of the repetitive telomeric sequence (TTAGGG)n in four salmonid species. Genome, 1996, 39, 1035-1038.	2.0	71
99	Localization of rDNA genes in European eel (Anguilla anguilla) by FISH. Genome, 1996, 39, 1220-1223.	2.0	24
100	G-like banding pattern in two salmonid species:Oncorhynchus mykiss andOncorhynchus kisutch. Chromosome Research, 1996, 4, 471-473.	2.2	2
101	Chromosomal evolution in salmonids: a comparison of Atlantic salmon, brown trout, and rainbow trout R-band chromosomes. Genetica, 1996, 98, 297-302.	1.1	6
102	Replication banding in the chromosomes of the European eel (Anguilla anguilla). Genetica, 1996, 98, 107-110.	1.1	4
103	A NOR-associated repetitive element present in the genome of two <i>Salmo</i> species (<i>salmo) Tj ETQq1 1 C</i>).784314 2.0	rgBT /Overloo
104	Characterization of an atypical NOR site polymorphism in brown trout (Salmo trutta) with Ag- and CMA ₃ -staining, and fluorescent in situ hybridization. Cytogenetic and Genome Research, 1996, 75, 234-239.	1.1	40
105	Differential digestion of the centromeric heterochromatic regions of the 5-azacytidine-decondensed human chromosomes 1, 9, 15, and 16 by Ndell and Sau3Al restriction endonucleases. Genetica, 1995, 96, 235-238.	1.1	0
106	Restriction endonuclease/nick translation procedure on fixed chromosomes of the Atlantic salmon fish cell line. Chromosome Research, 1995, 3, 379-385.	2.2	9
107	Low stocking incidence in brown trout populations from northwestern Spain monitored by LDH-5* diagnostic marker. Journal of Fish Biology, 1995, 47, 170-176.	1.6	37
108	Karotypic characterization of turbot (Scophthalmus maximus) with conventional, fluorochrome and restriction endonuclease-banding techniques. Marine Biology, 1994, 120, 609-613.	1.5	59

#	Article	IF	CITATIONS
109	A population analysis of Robertsonian and Ag-NOR polymorphisms in brown trout (Salmo trutta). Theoretical and Applied Genetics, 1994, 89, 105-111.	3.6	19
110	Induction of G-bands on <i>Anguilla anguilla</i> chromosomes by the restriction endonucleases Haelll, <i>Hinf</i> I, and <i>Mse</i> I. Cytogenetic and Genome Research, 1994, 65, 79-81.	1.1	18
111	Differential stocking incidence in brown trout (Salmo trutta) populations from Northwestern Spain. Aquaculture, 1993, 114, 203-216.	3.5	69
112	Quantitative analysis of the variability of nucleolar organizer regions in Salmo trutta. Genome, 1993, 36, 1119-1123.	2.0	32
113	Cytogenetic characterization of the AS cell line derived from the Atlantic salmon (<i>Salmo) Tj ETQq1 1 0.78</i>	34314 rgB ⁻ 1.1	T /Overlock
114	Analysis of centromere size in human chromosomes 1, 9, 15, and 16 by electron microscopy. Genome, 1991, 34, 710-713.	2.0	11
115	Cytogenetical characterization of hatchery stocks and natural populations of Sea and Brown Trout from northwestern Spain. Heredity, 1991, 66, 9-17.	2.6	57
116	Chromosomal heterochromatin differentiation in Salmo trutta with restriction enzymes. Heredity, 1991, 66, 241-249.	2.6	21
117	Analysis of the structure and variability of nucleolar organizer regions of <i>Salmo trutta</i> by C-, Ag-, and restriction endonuclease banding. Cytogenetic and Genome Research, 1990, 54, 6-9.	1.1	52
118	Berenil-induced undercondensation in human heterochromatin. Cytogenetic and Genome Research, 1989, 50, 27-33.	1.1	22
119	High Resolution Techniques for Study of Human Centromeric Heterochromatin. Biotechnic & Histochemistry, 1989, 64, 169-174.	0.4	2