
Yee Jun Tham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1401041/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Composition of Oxygenated Organic Molecules and Their Contributions to Organic Aerosol in Beijing. Environmental Science & amp; Technology, 2022, 56, 770-778.	10.0	16
2	Role of Iodine Recycling on Seaâ€Salt Aerosols in the Global Marine Boundary Layer. Geophysical Research Letters, 2022, 49, .	4.0	3
3	An evaluation of new particle formation events in Helsinki during a Baltic Sea cyanobacterial summer bloom. Atmospheric Chemistry and Physics, 2022, 22, 6365-6391.	4.9	6
4	Determination of the collision rate coefficient between charged iodic acid clusters and iodic acid using the appearance time method. Aerosol Science and Technology, 2021, 55, 231-242.	3.1	18
5	Direct field evidence of autocatalytic iodine release from atmospheric aerosol. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	25
6	Role of iodine oxoacids in atmospheric aerosol nucleation. Science, 2021, 371, 589-595.	12.6	94
7	Differing Mechanisms of New Particle Formation at Two Arctic Sites. Geophysical Research Letters, 2021, 48, e2020GL091334.	4.0	70
8	Investigation of several proxies to estimate sulfuric acid concentration under volcanic plume conditions. Atmospheric Chemistry and Physics, 2021, 21, 4541-4560.	4.9	3
9	Measurement report: Molecular composition and volatility of gaseous organic compounds in a boreal forest – from volatile organic compounds to highly oxygenated organic molecules. Atmospheric Chemistry and Physics, 2021, 21, 8961-8977.	4.9	12
10	Measurement of iodine species and sulfuric acid using bromide chemical ionization mass spectrometers. Atmospheric Measurement Techniques, 2021, 14, 4187-4202.	3.1	13
11	Measurement report: The influence of traffic and new particle formation on the size distribution of 1–800 nm particles in Helsinki – a street canyon and an urban background station comparison. Atmospheric Chemistry and Physics, 2021, 21, 9931-9953.	4.9	13
12	Atmospheric gaseous hydrochloric and hydrobromic acid in urban Beijing, China: detection, source identification and potential atmospheric impacts. Atmospheric Chemistry and Physics, 2021, 21, 11437-11452.	4.9	12
13	The driving factors of new particle formation and growth in the polluted boundary layer. Atmospheric Chemistry and Physics, 2021, 21, 14275-14291.	4.9	38
14	Winter ClNO ₂ formation in the region of fresh anthropogenic emissions: seasonal variability and insights into daytime peaks in northern China. Atmospheric Chemistry and Physics, 2021, 21, 15985-16000.	4.9	8
15	Chemical composition of nanoparticles from <i>α</i> -pinene nucleation and the influence of isoprene and relative humidity at low temperature. Atmospheric Chemistry and Physics, 2021, 21, 17099-17114.	4.9	12
16	Unprecedented Ambient Sulfur Trioxide (SO ₃) Detection: Possible Formation Mechanism and Atmospheric Implications. Environmental Science and Technology Letters, 2020, 7, 809-818.	8.7	34
17	Rapid growth of new atmospheric particles by nitric acid and ammonia condensation. Nature, 2020, 581, 184-189.	27.8	169
18	Heterogeneous N ₂ O ₅ reactions on atmospheric aerosols at four Chinese sites: improving model representation of uptake parameters. Atmospheric Chemistry and Physics, 2020, 20, 4367-4378.	4.9	33

Yee Jun Tham

#	Article	IF	CITATIONS
19	Uptake selectivity of methanesulfonic acid (MSA) on fine particles over polynya regions of the Ross Sea, Antarctica. Atmospheric Chemistry and Physics, 2020, 20, 3259-3271.	4.9	18
20	Enhanced growth rate of atmospheric particles from sulfuric acid. Atmospheric Chemistry and Physics, 2020, 20, 7359-7372.	4.9	58
21	Photoinduced Production of Chlorine Molecules from Titanium Dioxide Surfaces Containing Chloride. Environmental Science and Technology Letters, 2020, 7, 70-75.	8.7	12
22	Molecular understanding of the suppression of new-particle formation by isoprene. Atmospheric Chemistry and Physics, 2020, 20, 11809-11821.	4.9	49
23	Molecular Composition and Volatility of Nucleated Particles from α-Pinene Oxidation between â^'50 °C and +25 °C. Environmental Science & Technology, 2019, 53, 12357-12365.	10.0	32
24	Fast heterogeneous loss of N2O5 leads to significant nighttime NOx removal and nitrate aerosol formation at a coastal background environment of southern China. Science of the Total Environment, 2019, 677, 637-647.	8.0	38
25	Nighttime NO loss and ClNO2 formation in the residual layer of a polluted region: Insights from field measurements and an iterative box model. Science of the Total Environment, 2018, 622-623, 727-734.	8.0	28
26	Oxidizing capacity of the rural atmosphere in Hong Kong, Southern China. Science of the Total Environment, 2018, 612, 1114-1122.	8.0	69
27	Heterogeneous N ₂ O ₅ uptake coefficient and production yield of ClNO ₂ in polluted northern China: roles of aerosol water content and chemical composition. Atmospheric Chemistry and Physics 2018 18 13155-13171	4.9	67
28	and Physics 2018, 18, 13155-13171. Fast heterogeneous N ₂ O ₅ uptake and ClNO ₂ production in power plant and industrial plumes observed in the nocturnal residual layer over the North China Plain. Atmospheric Chemistry and	4.9	92
29	Physics, 2017, 17, 12361-12378. Significant concentrations of nitryl chloride sustained in the morning: investigations of the causes and impacts on ozone production in a polluted region of northern China. Atmospheric Chemistry and Physics, 2016, 16, 14959-14977.	4.9	146
30	Nighttime chemistry at a high altitude site above Hong Kong. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2457-2475.	3.3	78
31	Observations of nitryl chloride and modeling its source and effect on ozone in the planetary boundary layer of southern China. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2476-2489.	3.3	118
32	Impacts of heterogeneous uptake of dinitrogen pentoxide and chlorine activation on ozone and reactive nitrogen partitioning: improvement and application of the WRF-Chem model in southern China. Atmospheric Chemistry and Physics, 2016, 16, 14875-14890.	4.9	59
33	Presence of high nitryl chloride in Asian coastal environment and its impact on atmospheric photochemistry. Science Bulletin, 2014, 59, 356-359.	1.7	54