Guoxia Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1400783/publications.pdf

Version: 2024-02-01

101543 133252 3,709 76 36 59 citations h-index g-index papers 79 79 79 3363 docs citations all docs times ranked citing authors

#	Article	IF	CITATIONS
1	Sodium Incorporation for Enhanced Performance of Two-Dimensional Sn-Based Perovskite Transistors. ACS Applied Materials & Samp; Interfaces, 2022, 14, 9363-9367.	8.0	14
2	High-performance inorganic metal halide perovskite transistors. Nature Electronics, 2022, 5, 78-83.	26.0	121
3	Modulation of vacancy-ordered double perovskite Cs2SnI6 for air-stable thin-film transistors. Cell Reports Physical Science, 2022, 3, 100812.	5.6	17
4	High-performance hysteresis-free perovskite transistors through anion engineering. Nature Communications, 2022, 13, 1741.	12.8	51
5	UV-Treated ZrO ₂ Passivation for Transparent and High-Stability In ₂ O ₃ Thin Film Transistor. IEEE Transactions on Electron Devices, 2022, 69, 3722-3726.	3.0	7
6	Molecular Doping Enabling Mobility Boosting of 2D Sn ²⁺ â€Based Perovskites. Advanced Functional Materials, 2022, 32, .	14.9	18
7	Performance improvement of thin-film transistors with In ₂ O ₃ channel engineering. Journal of Asian Ceramic Societies, 2022, 10, 660-665.	2.3	3
8	Key Roles of Trace Oxygen Treatment for Highâ€Performance Znâ€Doped Cul pâ€Channel Transistors. Advanced Electronic Materials, 2021, 7, .	5.1	17
9	Highly Reliable Organic Field-Effect Transistors with Molecular Additives for a High-Performance Printed Gas Sensor. ACS Applied Materials & Samp; Interfaces, 2021, 13, 4278-4283.	8.0	17
10	Performance Enhancement of Field-Effect Transistors Based on Inâ,,Oâ, f Nanofiber Networks by Plasma Treatment. IEEE Electron Device Letters, 2021, 42, 176-179.	3.9	12
11	Effect of Monovalent Metal Iodide Additives on the Optoelectric Properties of Two-Dimensional Sn-Based Perovskite Films. Chemistry of Materials, 2021, 33, 2498-2505.	6.7	28
12	Engineering Copper Iodide (Cul) for Multifunctional pâ€√ype Transparent Semiconductors and Conductors. Advanced Science, 2021, 8, 2100546.	11.2	74
13	8â€4: Invited Paper: Transparent Zn Dopedâ€Cul for Highâ€Performance pâ€Channel Thin Film Transistors. Digest of Technical Papers SID International Symposium, 2021, 52, 89-91.	0.3	O
14	Recent progress on metal halide perovskite field-effect transistors. Journal of Information Display, 2021, 22, 257-268.	4.0	16
15	A Lewis base and boundary passivation bifunctional additive for high performance lead-free layered-perovskite transistors and phototransistors. Materials Today Energy, 2021, 21, 100722.	4.7	15
16	A high performance <scp>UWB MIMO</scp> antenna with defected ground structure and Uâ€shape branches. International Journal of RF and Microwave Computer-Aided Engineering, 2021, 31, e22270.	1.2	24
17	High-Performance Layered Perovskite Transistors and Phototransistors by Binary Solvent Engineering. Chemistry of Materials, 2021, 33, 1174-1181.	6.7	29
18	Printable Semiconductors for Backplane TFTs of Flexible OLED Displays. Advanced Functional Materials, 2020, 30, 1904588.	14.9	136

#	Article	IF	Citations
19	The role of oxygen in determining the electrical performance of ZnSnO nanofiber field-effect transistors. Journal Physics D: Applied Physics, 2020, 53, 015109.	2.8	8
20	Fast electrochromic switching of electrospun Cu-doped NiO nanofibers. Scripta Materialia, 2020, 178, 472-476.	5.2	23
21	Self-Welding and Low-Temperature Formation of Metal Oxide Nanofiber Networks and its Application to Electronic Devices. IEEE Electron Device Letters, 2020, 41, 62-65.	3.9	17
22	Low-Temperature Fabrication of Nontoxic Indium Oxide Nanofibers and Their Application in Field-Effect Transistors. IEEE Electron Device Letters, 2020, 41, 413-416.	3.9	22
23	Solution-Processed, Electrolyte-Gated In ₂ O ₃ Flexible Synaptic Transistors for Brain-Inspired Neuromorphic Applications. ACS Applied Materials & Samp; Interfaces, 2020, 12, 1061-1068.	8.0	56
24	Perovskite transistors clean up their act. Nature Electronics, 2020, 3, 662-663.	26.0	18
25	High-performance p-channel transistors with transparent Zn doped-Cul. Nature Communications, 2020, 11, 4309.	12.8	94
26	Highly Ambient-Stable Organic Thin-Film Transistors Fabricated Using Naphthalene Diimide and Thienylene–Vinylene–Thienylene-Based n-Type Polymers with Different Electron-Withdrawing Groups. Journal of Physical Chemistry C, 2020, 124, 20784-20793.	3.1	4
27	Molecule Charge Transfer Doping for pâ€Channel Solutionâ€Processed Copper Oxide Transistors. Advanced Functional Materials, 2020, 30, 2002625.	14.9	26
28	Printable Transistors: Printable Semiconductors for Backplane TFTs of Flexible OLED Displays (Adv.) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
29	Welded silver nanowire networks as high-performance transparent conductive electrodes: Welding techniques and device applications. Applied Materials Today, 2020, 20, 100634.	4.3	47
30	pâ€Doping Methods: Molecule Charge Transfer Doping for pâ€Channel Solutionâ€Processed Copper Oxide Transistors (Adv. Funct. Mater. 24/2020). Advanced Functional Materials, 2020, 30, 2070151.	14.9	0
31	Highâ€Performance and Reliable Leadâ€Free Layeredâ€Perovskite Transistors. Advanced Materials, 2020, 32, e2002717.	21.0	86
32	Solutionâ€Processed Highâ€Performance pâ€Type Perovskite NdAlO ₃ Thin Films for Transparent Electronics. Advanced Electronic Materials, 2020, 6, 1901110.	5.1	6
33	Pâ€17: Lowâ€Temperature, Solutionâ€Processed Inorganic pâ€Channel Cuâ€based Thinâ€Film Transistors and Circuits. Digest of Technical Papers SID International Symposium, 2020, 51, 1372-1374.	0.3	0
34	Polyol Reduction: A Low-Temperature Eco-Friendly Solution Process for p-Channel Copper Oxide-Based Transistors and Inverter Circuits. ACS Applied Materials & Earney; Interfaces, 2019, 11, 33157-33164.	8.0	37
35	22.1: <i>Invited Paper:</i> Solution processable pâ€type metal halide semiconductors for high performance transparent pâ€channel thinâ€film transistors. Digest of Technical Papers SID International Symposium, 2019, 50, 215-215.	0.3	О
36	Pâ€5.6: High performance solutionâ€processed pâ€type NdAlO ₃ semiconductor thin films and their application in transistors. Digest of Technical Papers SID International Symposium, 2019, 50, 737-737.	0.3	0

#	Article	IF	Citations
37	High-Performance Indium Oxide Thin-Film Transistors With Aluminum Oxide Passivation. IEEE Electron Device Letters, 2019, 40, 1949-1952.	3.9	29
38	Electrospun ZnSnO Nanofibers for Neuromorphic Transistors With Ultralow Energy Consumption. IEEE Electron Device Letters, 2019, 40, 1776-1779.	3.9	40
39	Perovskite and Conjugated Polymer Wrapped Semiconducting Carbon Nanotube Hybrid Films for High-Performance Transistors and Phototransistors. ACS Nano, 2019, 13, 3971-3981.	14.6	151
40	Enhancement-mode field-effect transistors based on Ti-doped In ₂ O ₃ nanowires fabricated by electrospinning. Journal Physics D: Applied Physics, 2019, 52, 225102.	2.8	9
41	Transparent Inorganic Copper Bromide (CuBr) p-Channel Transistors Synthesized From Solution at Room Temperature. IEEE Electron Device Letters, 2019, 40, 769-772.	3.9	22
42	Reliable Mobility Evaluation of Organic Field-Effect Transistors With Different Contact Metals. IEEE Electron Device Letters, 2019, 40, 605-608.	3.9	13
43	Solution-processed inorganic p-channel transistors: Recent advances and perspectives. Materials Science and Engineering Reports, 2019, 135, 85-100.	31.8	74
44	Solution-processed ternary p-type CuCrO ₂ semiconductor thin films and their application in transistors. Journal of Materials Chemistry C, 2018, 6, 1393-1398.	5 . 5	51
45	Draw Spinning of Waferâ€Scale Oxide Fibers for Electronic Devices. Advanced Electronic Materials, 2018, 4, 1700644.	5.1	13
46	Electrospun <i>p</i> -Type Nickel Oxide Semiconducting Nanowires for Low-Voltage Field-Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2018, 10, 25841-25849.	8.0	47
47	Doping: A Key Enabler for Organic Transistors. Advanced Materials, 2018, 30, e1801830.	21.0	141
48	High performance electronic devices based on nanofibers <i>via</i> a crosslinking welding process. Nanoscale, 2018, 10, 19427-19434.	5.6	15
49	Essential Effects on the Mobility Extraction Reliability for Organic Transistors. Advanced Functional Materials, 2018, 28, 1803907.	14.9	54
50	High-performance field-effect transistors based on gadolinium doped indium oxide nanofibers and their application in logic gate. Applied Physics Letters, $2018,112,$.	3.3	29
51	Nature-Inspired Capillary-Driven Welding Process for Boosting Metal-Oxide Nanofiber Electronics. ACS Applied Materials & Driver (1988) ACS ACS APPLIED & Driver (1988) ACS ACS APPLIED & Driver (1988) ACS	8.0	40
52	Roomâ€Temperature Solutionâ€Synthesized pâ€Type Copper(I) lodide Semiconductors for Transparent Thinâ€Film Transistors and Complementary Electronics. Advanced Materials, 2018, 30, e1802379.	21.0	125
53	Low-voltage and high-performance field-effect transistors based on Zn _x Gielectric. Nanoscale, 2018, 10, 14712-14718.	5.6	29

Transparent Electronics: Roomâ€Temperature Solutionâ€Synthesized pâ€Type Copper(I) lodide
54 Semiconductors for Transparent Thinâ€Film Transistors and Complementary Electronics (Adv. Mater.) Tj ETQq0 0 02gBT /Overdock 10 Tf

#	Article	IF	Citations
55	Solution Processed Metal Oxide Highâ€P Dielectrics for Emerging Transistors and Circuits. Advanced Materials, 2018, 30, e1706364.	21.0	158
56	Redox Chloride Elimination Reaction: Facile Solution Route for Indiumâ€Free, Lowâ€Voltage, and Highâ€Performance Transistors. Advanced Electronic Materials, 2017, 3, 1600513.	5.1	66
57	In situ one-step synthesis of p-type copper oxide for low-temperature, solution-processed thin-film transistors. Journal of Materials Chemistry C, 2017, 5, 2524-2530.	5.5	70
58	Photochemical Activation of Electrospun In ₂ O ₃ Nanofibers for High-Performance Electronic Devices. ACS Applied Materials & Samp; Interfaces, 2017, 9, 10805-10812.	8.0	66
59	Wafer-scale fabrication of a Cu/graphene double-nanocap array for surface-enhanced Raman scattering substrates. Chemical Communications, 2017, 53, 3273-3276.	4.1	14
60	Electrospun p-type CuO nanofibers for low-voltage field-effect transistors. Applied Physics Letters, 2017, 111, .	3.3	31
61	Solution Combustion Synthesis: Lowâ€Temperature Processing for pâ€Type Cu:NiO Thin Films for Transparent Electronics. Advanced Materials, 2017, 29, 1701599.	21.0	145
62	Solution-processed ytterbium oxide dielectrics for low-voltage thin-film transistors and inverters. Ceramics International, 2017, 43, 15194-15200.	4.8	52
63	Solution-Processed SrO _x -Gated Oxide Thin-Film Transistors and Inverters. IEEE Transactions on Electron Devices, 2017, 64, 4137-4143.	3.0	50
64	Hole mobility modulation of solution-processed nickel oxide thin-film transistor based on high-k dielectric. Applied Physics Letters, 2016, 108, .	3.3	122
65	Eco-friendly, solution-processed In-W-O thin films and their applications in low-voltage, high-performance transistors. Journal of Materials Chemistry C, 2016, 4, 4478-4484.	5.5	45
66	High-mobility p-type NiO _x thin-film transistors processed at low temperatures with Al ₂ O ₃ high-k dielectric. Journal of Materials Chemistry C, 2016, 4, 9438-9444.	5.5	82
67	Inhibition of minority transport for elevating the thermoelectric figure of merit of CuO/BiSbTe nanocomposites at high temperatures. RSC Advances, 2016, 6, 112050-112056.	3.6	19
68	Solutionâ€Processed Alkaline Lithium Oxide Dielectrics for Applications in n†and pâ€Type Thinâ€Film Transistors. Advanced Electronic Materials, 2016, 2, 1600140.	5.1	45
69	Low-temperature, nontoxic water-induced high-k zirconium oxide dielectrics for low-voltage, high-performance oxide thin-film transistors. Journal of Materials Chemistry C, 2016, 4, 10715-10721.	5.5	87
70	Waterâ€Induced Scandium Oxide Dielectric for Lowâ€Operating Voltage nâ€and pâ€Type Metalâ€Oxide Thinâ€ Transistors. Advanced Functional Materials, 2015, 25, 7180-7188.	Film 14.9	147
71	A water-induced high-k yttrium oxide dielectric for fully-solution-processed oxide thin-film transistors. Current Applied Physics, 2015, 15, S75-S81.	2.4	47
72	Low-temperature fabrication of high performance indium oxide thin film transistors. RSC Advances, 2015, 5, 37807-37813.	3.6	73

#	Article	IF	CITATIONS
73	Lowâ€Temperature, Nontoxic Waterâ€Induced Metalâ€Oxide Thin Films and Their Application in Thinâ€Film Transistors. Advanced Functional Materials, 2015, 25, 2564-2572.	14.9	161
74	Eco-friendly water-induced aluminum oxide dielectrics and their application in a hybrid metal oxide/polymer TFT. RSC Advances, 2015, 5, 86606-86613.	3.6	65
75	Solution-processed p-type copper oxide thin-film transistors fabricated by using a one-step vacuum annealing technique. Journal of Materials Chemistry C, 2015, 3, 9509-9513.	5.5	56
76	Fully Solution-Processed Low-Voltage Aqueous In ₂ O ₃ Thin-Film Transistors Using an Ultrathin ZrO _{<i>x</i>} Dielectric. ACS Applied Materials & Interfaces, 2014, 6, 17364-17369.	8.0	166