
Jeffrey M Trimarchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1400305/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Repeated evolution of eye loss in Mexican cavefish: Evidence of similar developmental mechanisms in independently evolved populations. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2020, 334, 423-437.	1.3	16
2	Molecular signatures of retinal ganglion cells revealed through single cell profiling. Scientific Reports, 2019, 9, 15778.	3.3	55
3	The Trim family of genes and the retina: Expression and functional characterization. PLoS ONE, 2018, 13, e0202867.	2.5	7
4	ALS-associated genes display CNS expression in the developing zebrafish. Gene Expression Patterns, 2018, 30, 14-31.	0.8	6
5	Single cell transcriptome profiling of developing chick retinal cells. Journal of Comparative Neurology, 2017, 525, 2735-2781.	1.6	25
6	Single-cell RNA-Seq of Defined Subsets of Retinal Ganglion Cells. Journal of Visualized Experiments, 2017, , .	0.3	7
7	Polo-Like Kinase 3 Appears Dispensable for Normal Retinal Development Despite Robust Embryonic Expression. PLoS ONE, 2016, 11, e0150878.	2.5	1
8	Complementary feature selection from alternative splicing events and gene expression for phenotype prediction. Bioinformatics, 2016, 32, i421-i429.	4.1	12
9	Disentangling neural cell diversity using single-cell transcriptomics. Nature Neuroscience, 2016, 19, 1131-1141.	14.8	283
10	Transplantation of iPSC-derived TM cells rescues glaucoma phenotypes in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3492-500.	7.1	89
11	Expression Profiling of Developing Zebrafish Retinal Cells. Zebrafish, 2016, 13, 272-280.	1.1	6
12	Transcriptomic analyses of Onecut1 and Onecut2 deficient retinas. Genomics Data, 2015, 4, 88-89.	1.3	2
13	Loss of Gq/11 Genes Does Not Abolish Melanopsin Phototransduction. PLoS ONE, 2014, 9, e98356.	2.5	20
14	Onecut1 and Onecut2 Play Critical Roles in the Development of the Mouse Retina. PLoS ONE, 2014, 9, e110194.	2.5	16
15	Making of a Retinal Cell. International Review of Cell and Molecular Biology, 2014, 308, 273-321.	3.2	8
16	Otx2 and Onecut1 Promote the Fates of Cone Photoreceptors and Horizontal Cells and Repress Rod Photoreceptors. Developmental Cell, 2013, 26, 59-72.	7.0	119
17	Analysis of gene expression in wildâ€ŧype and Notch1 mutant retinal cells by single cell profiling. Developmental Dynamics, 2013, 242, 1147-1159.	1.8	19
18	Plasma-seq: a novel strategy for metastatic prostate cancer analysis. Genome Medicine, 2013, 5, 35.	8.2	5

JEFFREY M TRIMARCHI

#	Article	IF	CITATIONS
19	Transcription factor <i>Olig2</i> defines subpopulations of retinal progenitor cells biased toward specific cell fates. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7882-7887.	7.1	128
20	Single-cell Profiling of Developing and Mature Retinal Neurons. Journal of Visualized Experiments, 2012, , .	0.3	12
21	Transcriptome sequencing of single cells with Smart-Seq. Nature Biotechnology, 2012, 30, 763-765.	17.5	73
22	Coexpression of Normally Incompatible Developmental Pathways in Retinoblastoma Genesis. Cancer Cell, 2011, 20, 260-275.	16.8	123
23	Development and diversification of retinal amacrine interneurons at single cell resolution. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9495-9500.	7.1	110
24	Identification of genes expressed preferentially in the developing peripheral margin of the optic cup. Developmental Dynamics, 2009, 238, 2327-2329.	1.8	44
25	Thyroid hormone components are expressed in three sequential waves during development of the chick retina. BMC Developmental Biology, 2008, 8, 101.	2.1	64
26	Identification of molecular markers of bipolar cells in the murine retina. Journal of Comparative Neurology, 2008, 507, 1795-1810.	1.6	109
27	The transcriptome of retinal Müller glial cells. Journal of Comparative Neurology, 2008, 509, 225-238.	1.6	343
28	Validation of oligoarrays for quantitative exploration of the transcriptome. BMC Genomics, 2008, 9, 258.	2.8	5
29	Temporal requirement of the alternative-splicing factor <i>Sfrs1</i> for the survival of retinal neurons. Development (Cambridge), 2008, 135, 3923-3933.	2.5	15
30	Individual Retinal Progenitor Cells Display Extensive Heterogeneity of Gene Expression. PLoS ONE, 2008, 3, e1588.	2.5	163
31	Molecular heterogeneity of developing retinal ganglion and amacrine cells revealed through single cell gene expression profiling. Journal of Comparative Neurology, 2007, 502, 1047-1065.	1.6	147
32	A sequence-oriented comparison of gene expression measurements across different hybridization-based technologies. Nature Biotechnology, 2006, 24, 832-840.	17.5	144
33	Sibling rivalry in the E2F family. Nature Reviews Molecular Cell Biology, 2002, 3, 11-20.	37.0	1,072
34	The E2F6 transcription factor is a component of the mammalian Bmi1-containing polycomb complex. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1519-1524.	7.1	144
35	E2F4 Is Essential for Normal Erythrocyte Maturation and Neonatal Viability. Molecular Cell, 2000, 6, 281-291.	9.7	174
36	E2F-6, a member of the E2F family that can behave as a transcriptional repressor. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 2850-2855.	7.1	201

#	Article	IF	CITATIONS
37	Proofreading-defective DNA polymerase II increases adaptive mutation in Escherichia coli Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 7951-7955.	7.1	120
38	Adaptive reversion of an episomal frameshift mutation in Escherichia coli requires conjugal functions but not actual conjugation Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 5487-5490.	7.1	135