Darren F Boehning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1399116/publications.pdf

Version: 2024-02-01

94 papers 4,836 citations

35 h-index 95083 68 g-index

102 all docs

 $\begin{array}{c} 102 \\ \\ \text{docs citations} \end{array}$

102 times ranked 5637 citing authors

#	Article	IF	CITATIONS
1	Ca2+-dependent protein acyltransferase DHHC21 controls activation of CD4+ T cells. Journal of Cell Science, 2022, 135, .	1.2	7
2	S-acylation of Orai1 regulates store-operated Ca2+ entry. Journal of Cell Science, 2022, 135, .	1.2	13
3	Sâ€acylation of STIM1 regulates storeâ€operated calcium entry. FASEB Journal, 2022, 36, .	0.2	O
4	The Role of S-Acylation in the Regulation of Store-Operated Calcium Entry. Biophysical Journal, 2021, 120, 53a.	0.2	0
5	Regulation of Dynamic Protein S-Acylation. Frontiers in Molecular Biosciences, 2021, 8, 656440.	1.6	19
6	Simvastatin modulates estrogen signaling in uterine leiomyoma via regulating receptor palmitoylation, trafficking and degradation. Pharmacological Research, 2021, 172, 105856.	3.1	17
7	DHHC5 Mediates \hat{I}^2 -Adrenergic Signaling in Cardiomyocytes by Targeting G \hat{I}^\pm Proteins. Biophysical Journal, 2020, 118, 826-835.	0.2	26
8	ER Stress Directly Activates Inflammatory Responses through Damp Production. Biophysical Journal, 2020, 118, 46a.	0.2	O
9	Regulation of DHHC5 Enzymatic Activity in Cardiomyocytes. Biophysical Journal, 2020, 118, 249a.	0.2	O
10	Regulation of T cell receptor signaling by protein acyltransferase DHHC21. Molecular Biology Reports, 2020, 47, 6471-6478.	1.0	12
11	Regulation of Orai1/STIM1 Function by S-Acylation. Biophysical Journal, 2020, 118, 404a.	0.2	O
12	Chronic ER Stress Leads to Hepatic Damp Production. Biophysical Journal, 2019, 116, 336a.	0.2	O
13	The Role of S-Acylation in Store Operated Calcium Entry. Biophysical Journal, 2019, 116, 237a-238a.	0.2	O
14	Aggregated and Hyperstable Damage-Associated Molecular Patterns Are Released During ER Stress to Modulate Immune Function. Frontiers in Cell and Developmental Biology, 2019, 7, 198.	1.8	13
15	The Palmitoyl Acyltransferase DHHC5 Mediates Beta-Adrenergic Signaling in the Heart by Targeting G Alpha Proteins. Biophysical Journal, 2019, 116, 370a.	0.2	O
16	Regulation of the Palmitoyl Acyltransferase DHHC5 by Phosphorylation in Cardiomyocytes. Biophysical Journal, 2019, 116, 369a-370a.	0.2	0
17	Browning of white adipose tissue after a burn injury promotes hepatic steatosis and dysfunction. Cell Death and Disease, 2019, 10, 870.	2.7	36
18	Dynamic Palmitoylation is a Critical Regulator of \hat{l}^2 -Adrenergic Signaling in Cardiomyocytes. Biophysical Journal, 2018, 114, 106a.	0.2	0

#	Article	IF	CITATIONS
19	Cell type-dependent effects of ellagic acid on cellular metabolism. Biomedicine and Pharmacotherapy, 2018, 106, 411-418.	2.5	16
20	Genetically encoded calcium indicators for studying long-term calcium dynamics during apoptosis. Cell Calcium, 2017, 61, 44-49.	1.1	23
21	Cardiac inositol 1,4,5-trisphosphate receptors. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 907-914.	1.9	36
22	Phosphorylation in AMPA Receptor Carboxy-Terminus: Structure, Function, and Lipid Regulation. Biophysical Journal, 2017, 112, 418a.	0.2	0
23	Extremely Rapid Palmitoylation of Signaling Proteins Downstream of \hat{l}^2 -Adrenergic Stimulation in Cardiomyocytes. Biophysical Journal, 2017, 112, 531a-532a.	0.2	0
24	Functionally redundant control of cardiac hypertrophic signaling by inositol 1,4,5-trisphosphate receptors. Journal of Molecular and Cellular Cardiology, 2017, 112, 95-103.	0.9	12
25	Protein Lipidation As a Regulator of Apoptotic Calcium Release: Relevance to Cancer. Frontiers in Oncology, 2017, 7, 138.	1.3	8
26	Statin use and uterine fibroid risk in hyperlipidemia patients: a nested case-control study. American Journal of Obstetrics and Gynecology, 2016, 215, 750.e1-750.e8.	0.7	35
27	Expression and Function of Inositol 1,4,5-Trisphosphate Receptors in the Heart. Biophysical Journal, 2015, 108, 262a.	0.2	0
28	Statins and Uterine Leiomyomas [23]. Obstetrics and Gynecology, 2015, 125, 17S-18S.	1.2	0
29	Signaling Pathways in Leiomyoma: Understanding Pathobiology and Implications for Therapy. Molecular Medicine, 2015, 21, 242-256.	1.9	109
30	Novel effects of simvastatin on uterine fibroid tumors: inÂvitro and patient-derived xenograft mouse model study. American Journal of Obstetrics and Gynecology, 2015, 213, 196.e1-196.e8.	0.7	36
31	The BRCA1 Tumor Suppressor Binds to Inositol 1,4,5-Trisphosphate Receptors to Stimulate Apoptotic Calcium Release. Journal of Biological Chemistry, 2015, 290, 7304-7313.	1.6	61
32	Rapid and transient palmitoylation of the tyrosine kinase Lck mediates Fas signaling. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11876-11880.	3.3	73
33	Simvastatin Potently Induces Calcium-dependent Apoptosis of Human Leiomyoma Cells. Journal of Biological Chemistry, 2014, 289, 35075-35086.	1.6	57
34	Association of the EF-hand and PH domains of the guanine nucleotide exchange factor SLAT with IP ₃ receptor 1 promotes Ca ²⁺ signaling in T cells. Science Signaling, 2014, 7, ra93.	1.6	14
35	Chaperoneâ€mediated reversible inhibition of the sarcomeric myosin power stroke. FEBS Letters, 2014, 588, 3977-3981.	1.3	12
36	Molecular Chaperone Mediated Inhibition of the Myosin Power Stroke may be Critical for Sarcomere Assembly. Biophysical Journal, 2014, 106, 766a.	0.2	0

3

#	Article	IF	CITATIONS
37	Ubiquilin-1 Overexpression Increases the Lifespan and Delays Accumulation of Huntingtin Aggregates in the R6/2 Mouse Model of Huntington's Disease. PLoS ONE, 2014, 9, e87513.	1.1	33
38	Caspase 3 cleavage of the inositol 1,4,5-trisphosphate receptor does not contribute to apoptotic calcium release. Cell Calcium, 2013, 53, 152-158.	1.1	17
39	Psychological stress, cocaine and natural reward each induce endoplasmic reticulum stress genes in rat brain. Neuroscience, 2013, 246, 160-169.	1.1	41
40	Henry F. Epstein, M.D. (1944–2013). Journal of Cell Science, 2013, 126, 871-872.	1.2	0
41	Ubiquilin-1 and protein quality control in Alzheimer disease. Prion, 2013, 7, 164-169.	0.9	21
42	The Calmodulin Regulator Protein, PEP-19, Sensitizes ATP-induced Ca2+ Release. Journal of Biological Chemistry, 2013, 288, 2040-2048.	1.6	13
43	XBP-1s Is Linked to Suppressed Gluconeogenesis in the Ebb Phase of Burn Injury. Molecular Medicine, 2013, 19, 72-78.	1.9	22
44	Ubiquilin-1 regulates amyloid precursor protein maturation and degradation by stimulating K63-linked polyubiquitination of lysine 688. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13416-13421.	3.3	78
45	Severe Injury Is Associated With Insulin Resistance, Endoplasmic Reticulum Stress Response, and Unfolded Protein Response. Annals of Surgery, 2012, 255, 370-378.	2.1	99
46	Measurement of Hepatic Protein Fractional Synthetic Rate with Stable Isotope Labeling Technique in Thapsigargin Stressed HepG2 Cells. International Journal of Biological Sciences, 2012, 8, 265-271.	2.6	20
47	Protein quality control in Alzheimer's disease: the contentious role of ubiquilin-1. Future Neurology, 2012, 7, 5-8.	0.9	2
48	STRUCTURE-FUNCTION OF THE TUMOR SUPPRESSOR BRCA1. Computational and Structural Biotechnology Journal, 2012, 1, e201204005.	1.9	151
49	Thermal Injury Activates the eEF2K-Dependent eEF2 Pathway in Pediatric Patients. Journal of Parenteral and Enteral Nutrition, 2012, 36, 596-602.	1.3	5
50	Propranolol Improves Impaired Hepatic Phosphatidylinositol 3-Kinase/Akt Signaling after Burn Injury. Molecular Medicine, 2012, 18, 707-711.	1.9	32
51	Purification and Aggregation of the Amyloid Precursor Protein Intracellular Domain. Journal of Visualized Experiments, 2012, , e4204.	0.2	0
52	IP ₃ R function in cells of the immune system. Environmental Sciences Europe, 2012, 1, 329-339.	2.6	9
53	Endoplasmic reticulum stress and insulin resistance postâ€trauma: similarities to type 2 diabetes. Journal of Cellular and Molecular Medicine, 2012, 16, 437-444.	1.6	32
54	Saltâ€inducible kinase 1 links p300 phosphorylation to CREB regulated gluconeogenesis post burn. FASEB Journal, 2012, 26, 758.7.	0.2	0

#	Article	IF	CITATIONS
55	Ubiquilin-1 Is a Molecular Chaperone for the Amyloid Precursor Protein. Journal of Biological Chemistry, 2011, 286, 35689-35698.	1.6	80
56	Insulin Protects against Hepatic Damage Postburn. Molecular Medicine, 2011, 17, 516-522.	1.9	37
57	Monitoring Dynamic Changes In Mitochondrial Calcium Levels During Apoptosis Using A Genetically Encoded Calcium Sensor. Journal of Visualized Experiments, 2011, , .	0.2	7
58	POST-BURN HEPATIC INSULIN RESISTANCE IS ASSOCIATED WITH ENDOPLASMIC RETICULUM (ER) STRESS. Shock, 2010, 33, 299-305.	1.0	59
59	T-cell receptor complex is essential for Fas signal transduction. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15105-15110.	3.3	34
60	Molecular Architecture of the Inositol 1,4,5-Trisphosphate Receptor Pore. Current Topics in Membranes, 2010, 66, 191-207.	0.5	7
61	FAD Mutations in Amyloid Precursor Protein Do Not Directly Perturb Intracellular Calcium Homeostasis. PLoS ONE, 2010, 5, e11992.	1.1	17
62	Calcium/calmodulinâ€dependent protein kinase II links hepatic cytosolic calcium release and apoptosis after burn injury. FASEB Journal, 2010, 24, 485.1.	0.2	0
63	Severe Burn-Induced Endoplasmic Reticulum Stress and Hepatic Damage in Mice. Molecular Medicine, 2009, 15, 316-320.	1.9	61
64	Calcium and ER stress mediate hepatic apoptosis after burn injury. Journal of Cellular and Molecular Medicine, 2009, 13, 1857-1865.	1.6	84
65	Generation of spinal motor neurons from human fetal brainâ€derived neural stem cells: Role of basic fibroblast growth factor. Journal of Neuroscience Research, 2009, 87, 318-332.	1.3	50
66	T Cell Receptor Regulation Of Fas-mediated Apoptotic Calcium Release. Biophysical Journal, 2009, 96, 424a.	0.2	0
67	Calcium and ER stress mediate hepatic apoptosis after burn injury. Journal of Cellular and Molecular Medicine, 2009, 13, 1857-1865.	1.6	64
68	77. Insulin Improves Hepatic Mitochondrial Function, Decreases Hepatocyte and ER Stress After Burn. Journal of Surgical Research, 2008, 144, 210.	0.8	0
69	Requirement of Inositol 1,4,5-Trisphosphate Receptors for Tumor-mediated Lymphocyte Apoptosis. Journal of Biological Chemistry, 2008, 283, 13506-13509.	1.6	21
70	Role of heme oxygenase-2 in pial arteriolar response to acetylcholine in mice with and without transfusion of cell-free hemoglobin polymers. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R498-R504.	0.9	11
71	CHARACTERIZATION OF THE INFLAMMATORY RESPONSE DURING ACUTE AND POST-ACUTE PHASES AFTER SEVERE BURN. Shock, 2008, 30, 503-507.	1.0	131
72	Hepatitis C virus core protein increases mitochondrial ROS production by stimulation of Ca 2+ uniporter activity. FASEB Journal, 2007, 21, 2474-2485.	0.2	159

#	Article	lF	CITATIONS
73	Effect of insulin on the inflammatory and acute phase response after burn injury. Critical Care Medicine, 2007, 35, S519-S523.	0.4	7 3
74	Gene identification and evidence for expression of G protein $\hat{l}\pm$ subunits, phospholipase C, and an inositol 1,4,5-trisphosphate receptor in Aplysia californica rhinophore. Genomics, 2007, 90, 110-120.	1.3	9
75	Requirement of biphasic calcium release from the endoplasmic reticulum for Fas-mediated apoptosis. Journal of Cell Biology, 2006, 175, 709-714.	2.3	75
76	A peptide inhibitor of cytochrome c/inositol 1,4,5-trisphosphate receptor binding blocks intrinsic and extrinsic cell death pathways. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1466-1471.	3.3	113
77	Agonist-induced Ca2+ entry determined by inositol 1,4,5-trisphosphate recognition. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2323-2327.	3.3	61
78	Carbon monoxide mediates vasoactive intestinal polypeptide-associated nonadrenergic/noncholinergic neurotransmission. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2631-2635.	3.3	41
79	Apoptosis And Calcium: New Roles For Cytochrome c and Inositol 1,4,5-trisphosphate. Cell Cycle, 2004, 3, 250-252.	1.3	73
80	Heme Oxygenase-2 Is Activated by Calcium-Calmodulin. Journal of Biological Chemistry, 2004, 279, 30927-30930.	1.6	80
81	Inositol 1,4,5-Trisphosphate Receptors as Signal Integrators. Annual Review of Biochemistry, 2004, 73, 437-465.	5.0	419
82	Apoptosis and calcium: new roles for cytochrome c and inositol 1,4,5-trisphosphate. Cell Cycle, 2004, 3, 252-4.	1.3	32
83	NOVELNEURALMODULATORS. Annual Review of Neuroscience, 2003, 26, 105-131.	5.0	623
84	Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nature Cell Biology, 2003, 5, 1051-1061.	4.6	573
85	Carbon Monoxide Neurotransmission Activated by CK2 Phosphorylation of Heme Oxygenase-2. Neuron, 2003, 40, 129-137.	3.8	138
86	CIRCADIAN RHYTHMS: Carbon Monoxide and Clocks. Science, 2002, 298, 2339-2340.	6.0	49
87	Single-Channel Recordings of Recombinant Inositol Trisphosphate Receptors in Mammalian Nuclear Envelope. Biophysical Journal, 2001, 81, 117-124.	0.2	51
88	Molecular Determinants of Ion Permeation and Selectivity in Inositol 1,4,5-Trisphosphate Receptor Ca2+ Channels. Journal of Biological Chemistry, 2001, 276, 13509-13512.	1.6	78
89	Direct association of ligand-binding and pore domains in homo- and heterotetrameric inositol 1,4,5-trisphosphate receptors. EMBO Journal, 2000, 19, 5450-5459.	3.5	97
90	Factors Determining the Composition of Inositol Trisphosphate Receptor Hetero-oligomers Expressed in COS Cells. Journal of Biological Chemistry, 2000, 275, 16084-16090.	1.6	40

#	Article	IF	CITATION
91	Functional Properties of Recombinant Type I and Type III Inositol 1,4,5-Trisphosphate Receptor Isoforms Expressed in COS-7 Cells. Journal of Biological Chemistry, 2000, 275, 21492-21499.	1.6	77
92	Biosynthesis of inositol trisphosphate receptors: selective association with the molecular chaperone calnexin. Biochemical Journal, 1999, 342, 153-161.	1.7	25
93	Biosynthesis of inositol trisphosphate receptors: selective association with the molecular chaperone calnexin. Biochemical Journal, 1999, 342, 153.	1.7	7
94	Membrane Insertion, Glycosylation, and Oligomerization of Inositol Trisphosphate Receptors in a Cell-free Translation System. Journal of Biological Chemistry, 1997, 272, 1579-1588.	1.6	64